SECTION

B TUNERS

SUB-SECTION BA TUNERS

general notes on
TUNERS A4 A5 A9 All. PAGE BA2. TUNER A4. " BA3.
" A5. " BA4.
" A7. " BA5.
" A8. " BA6.
" \quad 9. " BAB.
" All. " BAIO.
" Al9. » BAI2.

SUB-SECTION BB D/F TUNERS

TUNER A4I. PAGE BBZ

$"$	$A 42$.	$"$	$B B 4$
$"$	$A 43$.	$"$	$B B 6$
$"$	$A 44$.	$"$	$B B 9$
$"$	$A 46$	$"$	$B B 11$
$"$	$A 47$	$"$	$B B 1 S$

CENERAL NOTES CN TUNERS A4, A5. A 9 AND AII.

Tunors $44, \Delta 5, A 9$ and A11 are sumilarly designed; the maill differences in each tuner v. 11 be found in the separate notes on each instrument whioh follow.

Fach tuner has two positions, viz., "stand bby" and ", une".
The "stand-by" pasition is for use when searching for signals since only the A.m. C. hancile need be moved. In this pasition variations of voltage across the aerial tuning inductance (19) are durectly impressed betwoen grid and filament of the first valve, via the terminals (36) and (37); hence there is less selectivity as the secondary is cut out. (See Admiralty Fandbook of V / T (1981). parasraph 503). The "tune" position is for use when the required signal has been found and it is dosired to increase $2 t \mathrm{~s}$ strencth and cut out interferenoe. As the secondary circuit is in use the model is much more selective, but a second adjustment (the secondary condenser) must be made. (See Admiralty Handbook of W / T (1931) parasraph 509).

In this position it is often advantageous to use coupling much weaker than the optimum value, thus sacrificing signal strensth to gain selectivity. It is most important to note that the coupling must never be made so tight that it passes the optumum point, as if this occurs the result will be great loss of selectivity and no gain in signal strengtho

The valve equivalent condenser (30) is automatically inserted in parallel with the aerial circuit, when switchins over to the "tune" pasition to compensate for the lass of grid filament cepacity of the furst valve which is in circuit in the "stand-by" position, (See Admiralty Handbook of $1 / / T$ (1331 : paragraph 589). Tt is semieadjustable and its value may be adjusted by removing the tuner fron its box in the case of tho older models. In later models the ψ_{0}. E. C. is fitted on the face of the tuner and can be adjusted without removing the tuner from $2 t \mathrm{~s}$ box. With $\mathrm{D}_{\text {. }} \mathrm{D}_{\mathrm{o}}$ valves its maxinum value has becn increased to 0.06 jars.

The setiing of the V.I.C. can be checked by noting whether it is necessary to alter the aerial tuning condenser to read loudest signals on switching over from "stand-by" to "tune". If it is necessary the V.F.C. is out of adjustinent and should have its setting altered aocardingly.

The 40-jar condenser (21) is fitted to avold an earth on the filanent negative and the loak (n) to prevent accumulation of charge on the condenser. Without this system, were an earth to develop on the filament positive of the conmon battery system, it would short-circuit the L.T. battery and if positive H. I. were accidentally earthod all the valves in the moxlel might be burnt out. In $A 4$ the $40-j a r$ condenser and leak are joined between the aerial circuit and earth terminal (24). In the later tuners the condenser and leak are inserted between the "mo Fillament" terminal 45 and earth terminal (24). In the latter case the frid would be insulated from the filament in the stand-by position by the 40 -jar condenser if the leak were removed, as is clearly shown in the equivalent circuit sketches. The amplifier, however, contimues to function, since the grid is connocted to earth and there is a certain leak over insulation.

Thightning arresters (14) are fitted to provide an easier path to earth for high voltaces which might otherwise damage the receiving ciroujts. These voltages may be due to another ship transmitting near by, a hang up of the operating circuits or a heavy atmospheric or lightning discharge. Care should be taken that they do not get dirt in them and so short-oircuit the aerial tuning inductance, Cas tube arresters are gradually replacing the old type.

It should be noted that in the stand by mone switches (25) fitted in all tuners except A4, the centre stud is earthed in the "tune" position. This is to avoid capacity coupling between the studs. (See Admiralty Hlandbook of W/T (1931) paragraph 5A9).

It must be clearly understood that the tuning will vary according to the aerial which is being employed. If the tuner is used in conjunction with a small receiving aerial ($e_{0} g_{0}$, in C.P.R. ${ }_{0}$) the tuner and aerial circuits tune as one acceptor circuzt. When using a transmitting aerial for receiving, the tuner circuit is tuned as a separate acceptor circuit, provided the aerial coil, etc, of the transmitter is also approximately tuned to the same wave. In the case of A11, however, when receiving waves of the order of $16 \mathrm{kc} / \mathrm{s}$ the whole circuit, aerial and tuner, is tuned as one acceptor circuit by inserting the aerial tuning condenser (16) in the parallel position by means of the series parallel switch (18).
Details of switches. In the sketches of tuners the range switches have been drawn to show the functions which they carry out, Actually they are either of the dial or barrel type. An explanation of how the A.T.I. range switch of the $A 4$ functions is shown in the following sketches, as an example of a dial type of switch. The barrel type of switoh is much simpler since the contacts shom in the sketches of $A 7, A B$ and A11 are merely mechanically depressed by the revolving drum

Aura: Offer B.Saten. Destroyer F.C waver

TUNER A 4
BA 3
Date of design:-
1924.

Frequency range:-
1,500-6, $000 \mathrm{ke} / \mathrm{s}$.
Where kited: RECEIVER Sat Pits CE, CG.
In "stand-by" position the secondary circuit (26) (2\%) is left on open circuit, by the "gkand-bya~Tune" switch (25)

The Aerial Tuning (19) and secondary (26) Inductances are mounted at right angles to each others, so these is orly small constant mutual induction between them. The coupling coil (20) and secondary inductance are mounted on the same spindle and coupling is varied by varying the distance apart of the coil, by means of a rack and pinion (31)

The Aerial Tuning Inductance (19) is constructed in three sections, which can be switched into elranit by a range switch (marlead (34) on photograph). The Coupling Coil (20) is always in circuit and forms a fourth section. The four positions of the range switch give the following total values of inductance:-

$$
\begin{array}{ccccc}
\text { Position 1. } & 8.2 \text { mics. } & \text { Position } 3 . & 22.8 \text { mics. } \\
\% . & 11.6 \mathrm{n} & 4 . & 51.3 & n
\end{array}
$$

The Secondary Inductance has only two sections and the range switch (35) has, therefore, only two positions, as follows:-

Position 1. 6 mics. Position 2. 52 mics.
Double Earth Terminals (23) and (24) are fitted in case the 40 jar condenser (21) and 0.1 mean leak (22) should be punctured, in which case the earth connection could be moved from (24) to (23). Thine necessitates double lightning arresters (14) The system has not, been found necessary in later turners.

BA 4

\section*{TUNER A5}
 Date of design:- 1926.
 Frequency range: -$450-2,000 \mathrm{kc} / \mathrm{s}$.

Where fitted:-RECEIVERCD-Outfits CH, CI and CL.
In the "stand-by" position the secondary circuit. (26) (27) is short-circuited andeenthed by the "stand-by-tune" switch (25). The aeflilftuning (19) and secondary (26) induct ances are mounted at right angles to one another so that there is only small constant mutual induction between them. Coupling is varied by varying the angle between the coupling coil (20) and secondary inductance, which is done by turning handle (31).

The Aerial Tuning Inductance (19) is constructed in five sections, which can be switched into circuit by a range switch (marked (34) on photograph). The Coupling Coil (20) is always in circuit and foms a sixth section. The six positions of the range switch give the following total values of inductance:-

Position 1. 30 mics.

The Secondary Inductance has only four sections and the range switch (35) has, therefore, only four positions as follows:-

Position 1. 35 mics. Position 3. 220 mics.
2. 90 "

$$
\because \quad \text { 4. } \quad 490 \quad \text { n }
$$

EQUIVALENT CIRCUITS

Date of des:ign:-
Frequency sange:-
Where fitted:-

1928
60-170 kc/s.
D/T Oriffit SF. (see sub-arection IA)

A7 is a very simple tuner fitted in conjunction with Amplifior Mo for use with a horizontal frame aerial. As can be seen from the equivalent circuit diagram, the tumen merely placesis an IC circuit in series with the framecoil (13), both the inductance and caperitty keing variakle.

The aemial tuning inductance (16) is constructed in four sections, which ean be switched into circuit by a range switch (22) or cut out of circuit in Position 0 . The fous other positions of the range switch give the following total values of induetance:a

Position 1 - 310 mies.
Position $3-1,220$ mica.
" 2-520 "
" $4-2,190$ "
The capacity consists of a variable cordonser (17) which is always in eircuit and three fixed condenser (18), (1.9) and (20), which can be switched in to cixcuit ky marus of a xange switch (23). The five positions of the range switch give the following total valums of capheity:-

$$
\begin{array}{rl}
\text { Position } 1-0-0.5 \text { jar } & \text { Position } 3-1-1.5 \text { jars } \\
" ~ & 2-0.5-1 \\
& \\
& \\
& \\
& \text { Position } 5-2-2.5 \text { jams }
\end{array}
$$

The figures in krackets against the smajl switches in the sketch indicate the position number ot which they are closed ky the renge switch concerned (22) ore (23).

Reaction $i_{0} \theta_{0}$, regenerative amplification, is ottained from M9 and is uaed solely to increase strength of signals (see Admiralty Handoook of W/T (1931), parayraph 569.) A separate heterodyne unit (K5) is alweys to be used for C.W. reception.

FIG. C

FIG. d

FIG. a

FIG. v

FIG.e

FIG. f

Date x design Thequercy ranger. Where fitted:-

19\%9. $15-60 \mathrm{ko} / \mathrm{s}$.
D/F outfit sp. (sige sub-section TA).

Tunor AB is fitted in conjunction with amplifige MIS for use with a vertical loop aerizl (13). Thater vearinua conditions capacity of the loop aerial may have a value of $0-10$ jans and $A B$ has been destioned to meet these conditions. This is accomplished hy using a symmetrioal splith sec. ontary circuit, with the centre point earthed, throigh a 40 -jar condenser (29), and hy winding the coupling ofil (13) on the samp former as, and in the geometrinal contre off, the split, secondary irm ductemes (17). This bas two result, -
(a) The tums nearest the centre of the stoondary inductance are permanentily at earth putential and partiaily scraen the twons at the hich potential ends.
(b) Any remaining capacity coupling to the high potential ende of the secondary induatance rroxuses E.M. F^{\prime} s at the two ends of the coils, which oppose one another in tryine to send a oument round the secondary circuit. Thase opposing inM.F'f are equalised by this symmirical amangement.
The secondary inductance (17) is constructed in four sections, the total valne beind van. iable in two staks by a range switoh (18). In the " $15-30 \mathrm{ke} / \mathrm{s} "$ range all four sections are in circuit, Eiving a7,000 miss. In the " $30 \ldots 30 \mathrm{kc} / \mathrm{s}^{\prime}$ range only the inner two sections are in circuit (though the suter seotions are left connected at one end), giving $3_{8}, 600$ mics.

The capacity of the secondary circuit, consists of a variable 1 jar condenser (19), which is always in circuit and three fixed oondensers (20), (21) and (22) which can be wwitched in in parallel with (19) by means of a switch (p2) marked "Addtional Tuning Condensers", There are eight positions of this switch, each position being marked with the total value of the fixed condenzers being used. The totel capacity, however, can be varied by a further 1 jar upwards, hy varying the value of condenser (19) fram 0 to t jar. This gives the following ranges of capacity to ocrrespond with the marking of the switoh...

號
fir controlline reaction and te therefore used solely to inomease strength xignals and NOF to hetercdyne the incoming wave (which is done in the amplifier by moans of a separate heterodyne(mbi). The 10,000 ohm resistance (2) is insertad for the following reasor. To a very hish Padio rrequenoy the tuning condenser (19), Hic., iss af sikh a value that it wractically becores a shuet circuit\% THene, the two halwas of the tuning inductances may bo considered to be in parallel. with a short cirouzt betwen them These two indrotanas, ambining with the gridufilament capcoity of the valve (cge) form an IL Co circuit as shown in figures c and d which would oscillate at its own natural (high) frequency. The reaction condenser (24) would feed back enough energy into thes cironit to maintain these unwanted oscillations. To prevent this nocurring, the 10,000 onm resistance is inaerter in this circuit and effectively darms theru out; but, not being in the timed secomary circuit, has littile effect on the derired frequency.
tt must be remembered that when employing this mode1, better receplion will be obtained when the 1 mm is fointed approxinately in the direction of the transmitting station Good signals will, in fact, onily be obtained if the transmitting station is on or hefre the receiving vessel's bur, or on or abaf: her quarter, (Eee Adminaitiy flandbonis of \mathbb{N} / T (1931), paragraph 783),

FIG. α

TUNER A9.
BAB

FIG. d

STAND BY

Date of design:- 1928.
Frequency renge:- $\quad 60-670 \mathrm{kc} / \mathrm{s}$.

In the "stand-by" position the secondary cinvuit (26) to (28) is short-cixcuitod anu saxtibed by the action of the "stand-by-tune" switek (25). The aerial tuning (19) and secondary (28) inductancos ane monated at right angles to ons anothor with a screen bar (33) between them so there is practieally no matual indaction. Coupling is varied by varying the coupling between the coupling cail (20) and secondary induetrnca, which. is dome by turning handle (31). The coupling bamale (3i) is marked with nod and white soctors (as in the case of All) to show clearly tho valuos of coupling which may be employed with each range of A.T.I. The "normal" amount of coupling (which position is manked on the dial) is that position at which aiguals ean always be received without danger of the sincuit being over-coupled.

The aaxial thming inductance (19) is construsted in ive sections, which can be switehod into cireuit by a xange switeh (marked (34) on photograph). The coupling call (20) is always in circuit and forms a sixth section. The six positions of the range witch give the following total values of inductance:-

The aerial tuming condenser (16) automatically switches in a fixed sendenser (17) at 180° on the scale. A series-parallel switch (18) is prorided for connecting the AoT.C. (and its fixed condenser, if in) in semies or parallel with the aerial (series for high frequency, parellel for lon frequency). This is necessary due to the large frequency range of the model. The secondary inductance has only foum sections and the range switch (35) has, therefore, only four positions as follows:

Position 1.200 mies. Position 3. 440 mies.

$$
\begin{array}{lllll}
& 20 & 320 & \text { 4. } 3,700
\end{array}
$$

The secondary condensem (27) and (28) an similar to the aerial tuning condensexs (16) and (17), the fired condenser (28) being autquatically connected when the dial reads 180°.

Due to tie amall dimensions of this Tuner in relation to the frequency range corerod, the coils had to ke placed in such a relative position that thro is a mather high capacity coupling vatween themo Moreover this capacity coupling is not the stme on all ranges due to the fact that the distance apart of the working parte of the coils changes. To roduce this eapacity coupling it was found necessamy to introduce an electnostatic sareen (3a) botween the coils and 日iso to mm the lead betmeen the A.P.I. and coupling coil in a sereen (ia).

BAIO
TUNER A II

EQUIVALENT CIRGUITS

FIG.e

Date of dosign:Frequency rango:Whore istted:-

In the "stand-by" position the secandary circuit (26) to (29) is shont-aincuited and arithed by the aetion of the "stand-by-tume" switch (25). The aexial tuning (19) and secondary (26) inductiansos axe mounted with their axes paraliel, so as to give a definite fimed matual induction between thesp, Botla intuetances are constructed in sections which can be awitched into circuit by thais maporitre zange switches. The coupling coil (20) is almays in cincuit and, in fact, in positiom 1 it is the oniy inductance left in the A.T.I. It follove that in this position a slight muvement of the coupling coil has a large offect on coupling, whoreas in pasitim 10 there are nine obber sections of inductance pormanently corpled to the asomdayy, so fhat the coupling coil only has a very small effect. In order, therefore, to give the nomssaxy xange of coupling a mechanical derice (31) has been introduced by which the coupling coil in the position of maximum coupling is exactly co-axidal with and adjacent to the secondary inductancs; as the conpling hanile is turned the coupling coll not only sotates about its axis but neceiles fram the secondary inductance until there is room for it to be turned through 90°. A further morfement of the ccupling hanalle coneinues to notate the coil in the direction of reverse coupling and approaches the coil until it is once more adjacent to the secondary inductance. By thia moans it has been found possible to vary the compiing from zexo to the optimy value for all frequencios except the very lowest dosit with. In onder to awoid orez-coupling and consequent tuning difficulties on the higher frequencies, the dial of the coupling coil handle (31) is marked with white and rod sectors indicating the arcs in which coupling is safe or too tight. The different sectors correspond to the various positions of the A.T. Io range awitch and are engrayed accordingly. In goneral the best value of coupling is about 60°.

The aeriai tuming inductance (19) is constructed in nine sections, which can be switched into circuit by a renge switch (34). The coupling coil (20), as previously stated, is always in circuit and forms a tenth section. The ten positions of the range switch give the following total values of inductance:-

Position 5. 1,990 mics. Position 8. 11,630 mics.

4. 1140 "

The aecondary inductance has only seven sections, but the range switch (35) has eight positions an additional condenser (29) can be added in. In order to obtain a suitable atiffness in the secondary ciscuit on all frequencies, a variable capacity consisting of two $0-2$ jar variable condenasw mounted on the same spindle is used. These two condensers (27) and (28) can be comected in four different ways according to the frequency required;-

Both in series:- $0-1$ jar. Condenser (27) in circuit alone:- $0-2$ jars.
\therefore Both in parailel:- $0-4$ jars.
Both in parallel with the additional 3.5 jar ifed condensens- $2.5-7.5$ jars.
The switching for these condensers is performed automatically by the secondary inductance range switch (35). The following table gives the total values of inductance and capacity for each position of the range awitch:-

In the shetch the figures (in brackets) shown against the small switches indicate the number on the range switch concerned at which the amall switch closes. Where only ane figure is given the switch is anly closed for this one position; where two figures are given (o.g., 3 to 8) the switch remains closed for all position between and including the figures given.

The arrial tuning condenser (18) may be placed either in series or parallel with the aerial circuit (semies for high irequencies, parallel for low frequencies). This is neceasary due to the large frequency range of this tuner (see general notes on tuners, page BA2).

Two lightning arresters of the gas type (14) and (15) are fitted in parallel with the open arresters (17). Fig. d. showis the equivalent circuit when the turer is tuned es a separate acceptor circuit in series with the main transmittinf aerial circuit of a ship. It will be seen that the points marked "L" are at earth or low potential for a resonant frequency. If only one arrester were provided between the two points marked " L " there would be no tendency for a high voltage to be set up across it by a resonant high voltage and there will be danger of either the condenser (16) or the inductance (19) being darraged, by resonant high voltages such as might be causod by a hang-up in the operating circuits or a ship nsarby tranamitting on power on the same frequancy. In practice it has been found that the condenser is more likely to suffer and an arrester (15) has accond-
 ingly been fitted acruss it. The arrester ariginally fitted alone (14) is of course still necessary for non-resonant frequencies such as atmospherics etc.

Date of design:-
Frequency range:-
Where fitted:-
Valves used:-
1932.
$15-550 \mathrm{kc} / \mathrm{s}$.
Receiver Outfits CM, CN.
Hone in A19, kut one aerial isolating valve in N19.

Tuner A19 is used in conjunction with Amplifier M19 (soe page H24) and Note Magnifier N19 (see page I5) and is designed to replace Tuner A11 (see page BA11). It is enclosed in an aluminium kox, the primary and secondary oircuits each teing enclosed in a separate sareened compartment.

Two alternative methods of connecting the eerial to the set are provided. In one case the aerial is plugged into an aerial isolating unit situated in the same tox as Note Magnifier N19 (see page I5) and in the other case into the sooket (13) on the Tuner A19.

In the former case (figure as) the aerial is coupled ky a differential condenser (52) to the grid of the soreen grid isolating valve (8). The output of this valve is connected to the

Fig. a. coupling coil (36) which is coupled to the primary coil (34) of the A19. This arrangement allows a numker of receivers to ke used on the same aerial without mutual interference. The coupling coil (35) is wound in four sections outside the primary coil (34). The H. T. and L. T. Bupplies for the aerial isolating unit are desorited under Note Magnifier N19, page 19.

When the aerial is plugged into the sookat (13) of the A18, it is connected through a 0.3 jar variakle condenser (38) to the primary cirouit of the A19. An additional 0.2 jar inixed condenser (37) is connected in parallel with the werial coupling condenser (38) on the lowest irequency range as descriked kelow. The variakle condenser (38) is ganged to the primary tuning condenser (41). Two gas sap arrestors (14)(15) are fitted to protect the receiving circuits when using the aerial connection (13) on the A19. One arrestor (15) is connected across the primary coil (34) and one across the aerial condensers (37)(38). The two arrestors are connected in this manner similar to the tuner A11, and the reason is desorited on page BA11.

Fig.b.

The primary oircuit, consists of all or part of the coil (34) and either one or toth condensers $(41)(13)$. The secondary circuit $(35)(22)(23)$ is similar to the primary. The coils (34)(35)
 switching positions of each gection are controlled ky a twenty twe eontact karrel switoh (40)(42). The tuning condensers (41)(23) are 1.2 jars and the fixed condensers (18)(22) 1 jar.

The range mwitones (40)(42) are sc designed that, the following arrangements of sections of the coils (34) (35) and condensers are used in the prinary and secondary circuits for each range. As the two circuits are identioal the primary oircuit only is desoniked in the takle kelow and show in figure c.

Range	Prequency range	Arrangement of sections of the coil.			Tuning Condenser.	AerialCondenser.
		In circuit	Open circuit.	Disconnected and Bhart circuited.		
1	$15-20 \mathrm{kc} / \mathrm{s}$	$(26)(27)(28)(29)$	-	- :	(18)(41)	(37$)(38)$
2	$20-55 \mathrm{kc} / \mathrm{s}$	(23)(27)(28)(29)	-	-	(11)	(33)
3	$45-110 \mathrm{ko} / \mathrm{s}$	$(27)(28)(29)$	(26)	-	(41)	(38)
4	90-230 kc/s	(28)(29)	(27)	(23)	(41)	(83)
5	200-550 kc/s	(29)	(28)	(27)(23)	(41)	(38)

"standry" Position, when the "Standiky - Tune" switch (25) is in the "siandty" position the secondary circuit of the tuner is shoir circuited and the primary circuit is coupled to the Amplifier M18 througin the oapacity tetween the moving plate and theneen of the coupling condenger (20) n The equivalent circuit is shown in fig. d. and the sereen (4-4)

Fig.e.

TUNER AI9

"Tune" Position, When the "Standky-Tune" ewitoh (25) is in the "Tune" position the tuned primary and secondary circuitis are coupled by a small oapscity condenser (20) whieh-ie-gange te the veoondory hunives pomdonger (80) (see figures fo and if).

The fixed and moring plates of the condenser (20) are half cylinders, and the inner ar moving plate is adjustakle ty an external dial. Between the fixed and moving plates a cydindrical screen (44) is fitted. The control of this sareen is ganged to the secondary tuning condenser (23), and is so arranged that the affective capacity of the coupling condenser (20) varies with the tuning of the secondary oircuit to give practically constant seleotivity over the whole range of the receiver. At the sams bime the selectivity can te varied ky adjusting the moving plat of the condenser ky the external diel (20).

On range 1 (see figures $a_{0} \& f_{0}$) the effective eapacities of the condensers (23)(41) are increased ty the inclusion of the 1 jar condensers (18)(22) in parallel, and the coupling condenser (20) ky itself is too small. On this range, therefore, the coupling capacity in increased ky adding to it the capacity ketween the moving plate and the ocrupling condenser sareen. This is done ky connenting the oondenser screen parmanentily to one side of the condenear (22) and, as the sondenear (22) is connected in the circuit ky the switoh (21) on range 1 , the acreen is connected to the fixed plate of the condenser (20).

In other positions of the range switoh (40)(42) the switch (21) is kroken, and the 1 jar condeneer (22) provides an eflective earth path for the sereen of the coupling oondenser (20)

EQUIVALENT CIRCUITS

Fio.i.

