REDIFON ${ }^{*}$ Technical Information

INTER IM
MAINTENANCE MANUAL
for
SEALAND 66
MARINE VHF RADIOTELEPHONE

Redifon Telecommunications Limited, London SW.I8., England

Redifon Telecommunications

REDIFON Technical Information

Redifon Telecommunications Limited, London SW.I8., England

SAFETY FIRST

The operation of electronic equipment involves the use of voltages which may be sufficiently high to endanger human life. Although every practicable safety precaution has been incorporated in this equipment the following rules should be observed:-

The power should be removed completely and any high voltage capacitors in power supplies discharged manually with a shorting bar before changing valves or making internal adjustments.

Under no circumstances should any person reach within a unit for the purpose of servicing or adjusting the equipment without the immediate presence or assistance of another person capable of rendering aid.

Under no circumstances should interlock switches be removed, short circuited or tampered with in any way by other than authorised maintenance personnel; nor should reliance be placed upon the interlock switches for removing voltages from the equipment.

WARNING-SEMICONDUCTOR HAZARDS

TOXIC EFFECTS OF BERYLLIUM OXIDE (BERYLLIA)

Electronic components containing Beryllium Oxide are a serious hazard to health unless very carefully handled. The components are:-

Power Transistors, particularly VHF types, e.g. 2N3375, 2N3553, 2N3632, 2N5070, and equivalents. Power Diodes, Thyristors.
Ceramic material, identified by blue colouration or black lines.
Heat Sink Washers, identified in the finished state by a high polish and dark brass appearance.

Handling Precautions

The components should not be carried loose, which can cause breakages and dust, or broken open for inspection or manipulation. Normal soldering is safe, but excessive heat must be avoided.

Heat sink washers must not be carried loose, abraded by tooling, or heated other than when clamped in a heat sink application. Handle with gloves, cloth or tweezers when removing from equipment.

Cathode Ray Tubes of some makes are coated on the inside with a ceramic Beryllium Oxide mixture. If the glass is broken do not touch with bare fingers or disturb the dust by blowing.

Health Hazards

Beryllium Oxide is highly dangerous in a dust form: if inhaled, poisoning, indicated by respiratory troubles or Cyanosis (grey-blue discolouration of the skin) may develop within a week, or after a latent period extending to several years. Particles penetrating the skin through wounds or abrasions are liable to cause chronic ulcerations.

Disposal Instructions

In view of the health hazard, scrap components must not be thrown out with industrial or domestic waste. Advice should be sought from the local Authority.

Medical Precautions

If Beryllia is believed to be on, or to have entered the skin through cuts or abrasions, the area should be thoroughly washed and treated by normal first - aid methods followed by subsequent medical inspection.

Suspected inhalation should be treated as soon as possible by a Doctor - preferably at a hospital.

1 BRIEF DESCRIPTION AND SPECIFICATION

2 INSTALIATION AND SETTING UP

3 OPERATING INSTRUCTIONS

4 CIRCUIT DESCRIPTION

5 MAINTENANCE AND REPATR

7 ILLUSTRATIONS AND COMPONENT LISTS
1 BRIEF DESCRIPTION AND SPECIFICATION
PLATE 1.1 SEALAND 66 TRANSMITTER/RECEIVER UNIT MRT66PLATE 1.2 SEALAND 66 CONTROL UNITS
(a) Standard Control Unit SRC66
(b) Master Control Unit MRC661.1 BRIEF DESCRIPTION1.2 ANCI LLARY UNITS
1.3 SPECIFICATION
1.3.1 General1.3.2 Transmitter
1.3.3 Receiver

1.1 BRIEF DESCRIPTION

The Redifon Sealand 66 VHF Radiotelephone is designed specifically for vessels which require comprehensive extended and remote control facilities for working a full capability ship-to-ship and ship-to-shore communications link. Up to 66 channels may be provided within the International and Private Maritime Bands.

The Sealand 66 system comprises a compact master control unit (MRC66) with up to four additional standard control units (SRC66) and a separate transmitter/receiver unit (MRT66). Further extension units provide operation from bridge wings and cabins, whilst a telephone exchange link unit allows public correspondence operation via the VHF system. Interconnections between the various units are straightforward, thus enabling the Radiotelephone system to be installed to suit the operational requirements of any vessel.

The standard control unit provides facilities for selection of the required channels, transmit/receive operation with high or low transmitter power output, dual watch operation on any two selected channels, or operation via an exchange link unit if fitted. The master control unit provides facilities for selection of standard control units or cabin extensions in addition to the facilities listed above.

The equipment provides full coverage of the International band, comprising channels 01-28 (original channels on the 50 kHz plan) and $60-88$ (interleaved channels on the $25 \mathrm{kHz}_{\mathrm{z}} \mathrm{pl}$ an). Selection of the required channel numbers is performed by means of a touchnkeyboard, aided by two memory stores. Two channels A and B may be set up in these stores and are then immediately available at a touch of the appropriate key. To change one of these channels, it is only necessary to touch the 'clear' key and enter the new channel.

On the International band the selected channel number is displayed on the illuminated channel readout. In addition to the display readout, calling/ distress channel 16 has an 'In Use' lamp.

Up to 10 channels may be provided in the UK Private band, comprising channels 29-50 (50kHz plan) and interleaved channels 89-109 (25kHz plan). These channels, to customer order, are commisaioned by plugging in special integrated circuits (channel IC's). Private channels are selected on the keyboard as PO-P9; the channel readout display also indicates PO-P9 on these channels.

Generation of the required channel frequencies is performed by frequency synthesis, thus obviating the need for channel crystals. The frequency synthesiser system, which incorporates a voltage controlled oscillator (VCO) within a phase-locked loop, gives a high degree of frequency accuracy and stability.

The transmitter provides power outputs of up to 25 W (high) or approximately 1W (low) selected by a front panel switch. A level and mismatch detector
circuit protects the transmitter against damage due to short circuit,
open circuit or mismatched aerials and/or feeders.
The receiver comprises two separate RF/IF strips for single frequency and double frequency channels, followed by a common audio amplifier. The audio output stages provide 1 mW for the handset earpieces, and up to $2 W$ for the internal 10Ω loudspeaker (SRC66); an external loudspeaker is used with the MRC66. An optional loudhailer amplifier is available, which provides up to 5 W output for bridge wing loudspeakers.

A dual watch facility is incorporated in the equipment. Operation of the Dual Watch key on the keyboard causes the receiver to scan the two channels set up in the A and B memory stores, at approximately 0 . 2 second intervals. The dual watch channels may be any two of the available channels, International or Private. When a signal is received on either channel the receiver pauses for up to 8 seconds, the channel readout indicating the received channel number.

Operation of the Radiotelephone may be either simplex or duplex on the appropriate channels. In normal installations two aerials are required. One is connected via a built-in aerial changeover relay to either the transmitter output or the single frequency receiver input. The second aerial is connected to the double frequency receiver input.

On the International band, single aerial working (including duplex) is possible using Duplexer type DXU66. If simplex operation only is acceptable then single aerial working can be achieved by means of an internal diode switching circuit, which is linked in as required. On early equipments (up to serial no. 149) this modification has to be fitted at the factory or by the local depot/agent when required.

The MRT66 transmitter/receiver unit is contained in a rugged waterproof case of diecast aluminium construction. The top and bottom covers of the case can be removed to gain access to all internal components without removing the unit from its mounting frame. The MRC66 and SRC66 control units are also of fully waterproof diecast construction, with recessed front panels to protect the controls. The control units can be withdrawn from their housings for access to internal components.

A11 units are of modular construction, and all printed circuit boards are of high grade glass-fibre material. Reliability is asgured by the use of silicon transistors and integrated circuits throughout the equipment.

The transmitter/receiver unit is supplied with a bulkhead mounting frame, and control units are provided with a multi-position mounting cradle permitting installation on a bulkhead, deckhead or bench top. A separate mounting kit is available for mounting control units in a console or a standard 19 inch rack. Special bulkhead mounting versions of the control units are available to special order, for locations where the projection from the bulkhead must be kept to a minimun.

The units are installed separately in the required positions, interconnections being made by means of multicore cables which enter
each unit via watertight glands. Maximum recommended cable length from the transmitter/receiver unit to any control unit is 206 m (670 ft).

The performance of the equipment is in accordance with ITU regulations. It is designed to meet UK specification MPT1251, issued by the Home Office, and complies with the relevant European specifications.

The Sealand 66 system operates from the ships $A C$ mains supply, with automatic changeover to a secondary 24 V DC supply should the mains supply fail. Voltage variations within $\pm 10 \%$ will not affect the equipment specification, but safe operation is obtained with DC inputs between 18 34V. An optional battery reversion unit is available for installations which require operation from a 48 V DC supply.

The standard Sealand 66 system is not suitable for base station use, but a special version modified to $S K 10263 / S$ can be supplied for this purpose (for further details refer to Redifon Marine Division).

1.2 ANCILLARY UNITS

In any system using more than one control unit, the Master Control function is performed by an MRC66. Up to four standard control units type SRC66 may be used and these are selected by a front panel switch on the master control unit. A typical installation may, for example, utilise a master control unit on the bridge, with standard control units in the captain's cabin, radio room and ship's office. This system allows the Radiotelephone to be operated from any of the four positions, but with priority of operation from the bridge whenever necessary.

Extension units which can be selected from a master control unit MRC66 are listed below:-

Cabin extension: ECU61
Cabin extension with loudspeaker and calling facility: ECU60
Bridge wing extension handset (plug-in type): ECU63
Bridge wing extension handset in waterproof box: ECU62
Bridge wing loudspeakers (weatherproof): 158 , 8 W e.g. Rola Celestion FG/C or Redifon A4559 Edn. A
Bridge wing loudhailer amplifier (5W) for use with the above loudspeakers: 11201A

An external loudspeaker 11207 A must be used with the MRC66 since this unit does not include an internal loudspeaker.

An exchange link unit EU66 allows duplex public correspondence calls via the ship's private 2-wire telephone exchange. The exchange link unit may be selected from either a master or a standard control unit (only one control unit in any system may be allowed to select public correspondence operation). For full details of this unit see separate ELU66 handbook, no. 1007-1.

Where operation of the Sealand 66 is required from a 48 V DC supply, a battery reversion unit $11202 A$ is available (to special order only).
1.3 SPECIFICATION

1.3.1 General

Frequency coverage
Transmitter $156 \cdot 025-158 \cdot 500 \mathrm{MHz}_{z}$
Receiver $156 \cdot 300$ - $158 \cdot 500 \mathrm{MHz}$ single frequency channels $160 \cdot 625-163 \cdot 000 \mathrm{MHz}$ double frequency channels

Frequency stability
± 10 parts in 10^{6}
Channel separation
25 kHz
Number of channels
Maximum of 66
International channels 01-28 and 60-88 (excluding guard channels 75 and 76) may be selected directly at the keyboard. Any 10 Private channels from the range 29-50 and 89-109 may be preset, and are selected as PO-P9. (International channels may also be preset if required).

If an unused or unauthorised channel is selected, indication is given by a flashing warning display of the channel number; the transmitter and receiver are inhibited.

Modulation
Phase modulation; maximum deviation $\pm 5 \mathrm{kHz}$
Aerial impedance
50Ω unbalanced
Duty cycle
Continuous
Temperature range
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature
$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Power supplies
The equipment operates from two independent supplies; primary supply is ships AC mains, secondary supply $D C$ batteries.

Automatic changeover to secondary supply if primary supply fails.
Primary supply
$110-120 \mathrm{~V}$ or $220-240 \mathrm{~V}, 45-60 \mathrm{~Hz}$
Transformer tappings in steps of 5 V
Specification unaffected by $\pm 10 \%$ variation in supply voltage
Secondary supply
26. 4 V DC (nominal 24V battery)

Specification unaffected by $\pm 10 \%$ variation in supply voltage
Minimum voltage 19V
Maximum voltage 32 V
Both poles of this supply are isolated from the equipment earth. The equipment may therefore be connected to a positive earth, negative earth or floating secondary supply.

1000-1

Operation from nominal 48 V DC supply is possible using optional battery reversion unit 11202 A (to special order only) .

Consumption
Receiving: approximately 45 VA
Transmitting (high power output): approximately 150VA.
System configurations
Any system from basic transmitter/receiver unit MRT66 with one standard control unit (SRC66) to full system capability comprising the following: Transmitter/receiver unit with a master control unit (MRC66) and up to four standard control units, together with cabin and bridge wing extensions and telephone exchange connection. NOTES

1. There are no user controls on the MRT66 which therefore always requires
at least one control unit (master or standard).
2. Maximum recommended cable length from the transmitter/receiver unit to any control unit is 206 m (670 ft).
Mountings
Bulkhead mounting frame supplied with transmitter/receiver unit MRT66 Multi-position mounting cradle supplied with control units SRC66 and MRC66, permitting installation on bulkhead, deckhead or bench top. Rack/console mounting kit type 11219A is available for use with control units (this kit must be fitted at the factory or by the local depot/agent). Special bulkhead mounting control units can be supplied to special order (refer to Redifon Marine Division for details).

Dimensions and weights (including mounting frame/cradle)	Width	Height	Depth	Weight
Transmitter/receiver unit MRT66	$\begin{aligned} & 337 \mathrm{~mm} \\ & (13-1 / 4 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 483 \mathrm{~mm} \\ & (19 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 127 \mathrm{~mm} \\ & (5 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 16-3 \mathrm{~kg} \\ & (36 \mathrm{lb}) \end{aligned}$
Standard control unit SRC66	$\begin{gathered} 470 \mathrm{~mm} \\ \left(18 \frac{1}{2} \mathrm{in}\right) \end{gathered}$	$\begin{aligned} & 165 \mathrm{~mm} \\ & \left(6 \frac{1}{2} \mathrm{in}\right) \end{aligned}$	$\begin{aligned} & 178 \mathrm{~mm} \\ & (7 \mathrm{in}) \end{aligned}$	$\begin{aligned} & \text { 8. } 3 \mathrm{~kg} \\ & (18 \mathrm{lb}) \end{aligned}$
Master control unit MRC66	$\begin{aligned} & 470 \mathrm{~mm} \\ & \left(18 \frac{1}{2} \mathrm{in}\right) \end{aligned}$	$\begin{aligned} & 165 \mathrm{~mm} \\ & \left(6 \frac{1}{2} \mathrm{in}\right) \end{aligned}$	$\begin{aligned} & 178 \mathrm{~mm} \\ & (7 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 8 \cdot 3 k g \\ & (18 \mathrm{lb}) \end{aligned}$
Bulkhead mounting SRC66 (no mtg. frame required)	$\begin{aligned} & \left.\begin{array}{l} \text { Type } \\ \text { 11217A } \\ \text { Type } \\ \text { 11217B } \end{array}\right\} \text { Marine Division } \end{aligned}$			
Bulkhead mounting MRC66 (no mtg. frame required)				

Compass safe distances see page $1-5$ (a)
1.3.2 Transmitter

Power output
High power 20-25W
Low power lesa than 1W
AF input impedance
Approximately $1 \mathrm{k} \Omega$ (microphone impedance 3008)
Modulation sensitivity
6 mV emf from 3008 source for $\pm 3 \mathrm{kHz}_{\mathrm{z}}$ deviation at 1 kHz
Modulation response
Within $+1 \mathrm{~dB}-3 \mathrm{~dB}$ of a 6 dB /octave pre-emphasis characteristic from 300 Hz to 3 kHz

	Grade of compass		
	I ($1 / 4^{\circ}$)	II \& III (1°)	IV (2°)
Transmitter/receiver MRT66	920 mm (3ft)	610 mm (2ft)	460 mm ($1 \frac{1}{2} \mathrm{ft}$)
Duplexer DXU66	920 mm (3 ft)	610 mm (2ft)	460 mm ($1 \frac{1}{2} \mathrm{ft}$)
Distribution box 11128A	920 mm (3ft)	610 mm (2ft)	305 mm (1ft)
Control unit MRC66 or SRC66	1070 mm ($3 \frac{1}{2} \mathrm{ft}$)	610 mm (2ft)	460 mm ($1 \frac{1}{2} \mathrm{ft}$)
Control unit handset	610 mm (2ft)	305 mm (1ft)	155 mm (6in)
Loudspeaker 11207A	1830 mm (6 ft)	1070mm (3t ${ }^{\text {f }}$)	765 mm ($2 \frac{1}{2} \mathrm{ft}$)

```
Modulation distortion
    less than 10% for }\pm3\textrm{kHz}\mathrm{ devjation at }1\textrm{kHz
Mo1:= level
    At least 'OdB down relative to }\pm3\textrm{kHz}\mathrm{ deviation at 1kHz
spurious radiation
    Less than 2uw into 50S
Output protection
    [h& transmitter can be operated for at least }10\mathrm{ minutes with the
    aerial open circuit or short circuit
1.3.3 Receiver
sensitivity
    A signal of liul emf with }\pm3\textrm{kHz}\mathrm{ deviation at }1\textrm{kHz}\mathrm{ will give a signaly
    noise ratio better than 2OdB, or a SND/ND (SINAD) ratio better than
    20dB using suitable weighting filter.
Intermediate frequency
    10.7}\mp@subsup{\textrm{MH}}{7}{}\mathrm{ on single frequency channels
    15.3MH7 on double frequency channels
IF bandwidth
    #7. 5kH7
Modulation response
    Within +1dB - 3dB of a 6dB/octave de-emphasis characteristic from
    30OHz to 3kHz
AF outputs
    MRT66: OdBm into 600% SRC66/MRC66: 1mW (adjustable)into
                                    2W into 15\Omega
                                    300% handset earpiece
                                    2W into 158 loudspeaker
Selectivity
    Not less than 70dB adjacent channel rejection using two signal generator
    method
Spurious rejection
    Better than 70dB for frequencies more than 25kHz}\mathrm{ off tune
Radiation
    Less than 2nW into 50\Omega at either aerial socket
Squelch
Noise operated, adjustable squelch provided; minimum opening level
approximately 0.5\muV emf.
Dual watch
Monitors the two channels set up in the \(A\) and \(B\) memory stores at
approximately }5\mathrm{ channels/ second (about 0.2 seconds/channel).
Channel readout display is blanked/during scanning, except for the two
A and B indicators (decimal points).
    maximum of is
Receiver pauses for/ 5-8 seconds when signal/received on either channel;
if signal duration is less than this, scanning recommences at end of signal.
    this
During/pause, the channel readout indicates the received channel
number.
```

Transmitter is inhibited during dual watch operation.

Fig. 2. 1 Typical Sealand 66 Systems
Fig. 2. 2 Supply Arrangements and Aerial Options
2.2 INPACKING
2. EQI IPMENT MOUNTING

Fig. 2.? Fixing Centres for Sealand 66 Units
2.4 EARTH CONNECTIONS
2.5 AFRIAL DETAILS
2.5.1 Standard 2 Aerial Installation Fig. 2.4 Aerial Mounting Details
2.5.2 Aerial Feeders
2.5 .3 Assembly of N-Type Coaxial Plugs Fig. 2.5 N-Type Coaxial Plug Details
2.5.4 Single Aerial Installations
2.6) SUPPLY CONNECTIONS
2.6.1 Primary Supply
2.6.2 Secondary Supply
2.7 SYSTEM INTERCONNECTIONS
2.7.1 Distribution Boxes

Fig. 2.6 Method of Inserting Cables
Fig. 2.7 Fanning Strip Detail
Table 2.1 Distribution Box Connections
2.7.2 Local Loudspeaker
2.7.3 Cabin Extensions

Table 2.2 Cabin Extension Connections
2.7.4 Bridge Wing Extensions

Table 2.3 Bridge Wing Extension Connections
2.7.5 Bridge Wing Loudspeakers

Table 2.4 Loudhailer Amplifier Input Connections
2.7.6, Exchange Link Unit
2.7.7 Duplexer and Control Table 2.5 Duplexer Supply Connections
2.8 OPTIONAL CONNECTIONS
2.8.1 Radio Room Loudspeaker
2.8.2 Tape Recorder
2.9 INSTALIATION CABIES
2. 10 SETTING UP
2.10.1 Selection of Other Control Units from Master
2.10.2 Selection of Exchange Link Unit
2. 10. 3 Handset Volume Adjustment
2. 10.4 Private Channel Selection Fig. 2.8 Preparation of Channel IC's
2.11 COMMISSIONING

2.1 GENERAI.

This chapter contains all the necessary information for installing a complete Sealand 66 VHF Radiotelephone system, and setting it up prior to oper 1 ion.

Fig. 2. 1 gives block diagrams of some typical systems. These range from the basic transmitter/receiver with a single standard control unit (a) to a comprehensive system (d) which includes full remote control from up to ; positions, with cabin and bridge wing extension working (public correspondence operation via an exchange link unit. Supply arrangements and aerial options are indicated in Fig. 2.2.

NOTES

1. The transmitter/receiver unit has no user controls, other than supply on/off switches. The installation must therefore always include at least one control unit (either master or standard).
2. Extension facilities (other than exchange link unit) are available ONLY from master control units MRC66. Thus, for example, if the Master (i.e. main) control unit is located in the radio room, it will be necessary to use a secondary MRC66 on the bridge in order to select bridge wing extensions or loudhailers. Conversely, if the Master control were on the bridge a secondary MRC66 would be necessary in the radio room for selection of cabin extensions.

The mounting of the various units and ancillaries will be found to be straightforward. The complexity of the inter-unit cabling depends on the number of facilities included in the installation; full details are given in section 2.7.

Special attention must be paid to the installation of the aerials and feeders. The instructions given in section 2.5 must be followed carefully if satisfactory results are to be obtained.

2.2 UNPACKING

Immediately on receipt of the equipment, examine the packing case(s) for signs of damage, and inspect the contents for damage and/or shortages. In the event of damage or shortages being apparent, the Carriers and the local Redifon depot/agent must be notified within 3 days of receipt.

After inspection, partially re-pack the equipment and store in a clean, dry area until reauired for installation. Avoid storage areas subject to condensation or high temperature.

2.3 EQUIPMENT MOUNTING

Examination of the various units will indicate the method of mounting required. Units which are supplied with a mounting frame may be fitted to a bulkhead, deckhead or bench top. Remove the units and bolt the frames securely in the required positions; fixing centres are given in Fig. 2. 3. Do not overlook space requirements for the installation cables.

A rack/console mounting kit, type 11219 A , is available for fitting control units into a console or a standard 19 inch rack. This kit must be fitied to the control unit at the factory, or by the local depot/agent. In this form, the unit occupies 176 mm (7 in) of rack height, and the handset plugs into a socket on the front panel surround. When installed in this manner the unit must be supported on slides or runners; it must not be mounted in such a way that all the weight is taken by the front panel.

The transmitter/receiver must be installed where it will be accessible for servicing, and adequate lighting and supply points for test gear must be available for this purpose. It is therefore preferable for this unit to be installed in the radio room.

All units should be located in reasonably cool and dry areas. Position the units away from doors or opening windows which may allow sea or rain water to spray on them. Avoid direct sunlight, especially on the control units, as this will obscure the channel readout displays and indicator lamps.

The transmitter/receiver and control units are all supplied with $3 m$ (10 ft) long flying leads attached. A distribution box must be mounted adjacent to each unit so that the flying leads terminate conveniently. However, where a control unit is mounted less than $6 m$ ($20 f t$) from the transmitter/receiver, only one distribution box will be required for the two units. Distribution boxes must be mounted with the cable entries at the bottom.

The maximum distance between the transmitter/receiver and any control unit in the Sealand 66 system should not exceed $206 m$ ($670 f t$), i.e. maximum cable length of 200 m (650 ft) between the associated distribution boxes. Note however, that in a centre-castle vessel (e.g. ferry) with centrally mounted transmitter/receiver, fore and aft mounted control units may be up to $406 \mathrm{~m}(1300 \mathrm{ft})$ apart.

2.4 EARTH CONNECTIONS

The main connection to the ship's earth is taken from the earthing stud on the transmitter/receiver case to a solid metal bulkhead adjacent to the unit. Use $19 \mathrm{~mm}(3 / 4 \mathrm{in})$ wide by $3 \cdot 2 \mathrm{~mm}(1 / 8 i n)$ thick or similar tinned copper braid (e.g. Redifon ref. R1). Keep the earth connection short, but allow sufficient for the unit to be hinged out from the frame for servicing or faultfinding purposes.

Abstract

In addition, all ancillary units must be bonded to the ship's earth, including distribution boxes, loudhailer amplifier(s) and Duplexer (where used in the installation). Using tinned copper braid as above, connect from the earthing studs provided to a solid metal bulkhead adjacent to each unit. Keep these earth connections as short as possible.

2.5 AERIAL DETAILS

2.5.1 Standard 2 Aerial Installation

The aerials normally used are vertically mounted 50Ω VHF dipoles. These should be located in a clear area, away from the funnel and other structures. In any case, they must be stood off at least 2 m (6 ft) from any large metal structure which protrudes above the upper clamp band.

For duplex working it is essential that the mutual coupling between the two aerials is reduced to a minimum. The preferred method is to mount the dipoles on a common vertical axis, with a minimum space of 2 m (6 ft) between them. The upper dipole then serves as the single frequency aerial, i.e. transmitter output and single frequency receiver input.

If horizontal spacing is to be employed, the aerials must be at least 11 m (35 ft) apart in this plane; a vertical spacing of 2 m (6 ft) is still required. Again, the higher dipole serves as the single frequency aerial.

Fig. 2.4 gives dimensions and mounting details for a typical dipole aerial.

2.5.2 Aerial Feeders

The recommended aerial feeder cable is 50Ω type UR67 (Redifon cable ref. 1 K 2). A single continuous length of cable should always be used if circumstances permit. Cable joins should be avoided if possible, but where necessary they must be made using 508 N -type coaxial plugs and jacks, e.g. Greenpar GE15015C1 (Redifon stores index MX502) and GE15022C 1 (MX503) respectively. These must be situated in an air-conditioned area with access for servicing.

If the required feeder length is greater than 46 m (150ft), Redifon Marine Division should be consulted for an alternative low loss cable.

Feeder cables supplied by Redifon Telecommunications Ltd. are already terminated at one end with the correct N-type coaxial plug. It is MOST IMPORTANT that this end is connected to the aerial, so that any necessary cutting to length is done in the radio room.

Before connecting to the aerial, smear the coaxial plug and socket threads with a suitable silicone grease. e.g. Midland Silicones type MS4 (Redifon stores index G88). This will reduce corrosion and facilitate
subsequent removal of the plug from the aerial. Avoid greasing the coaxial plug centre pin or the outer sheath of the cable. Finally, weatherproof the connectors by sliding the plastic sleeves provided (type PS1) over the assembly - see Fig. 2.4.

Clip or tape the feeder cable to the aerial supports, leaving a $0.3 \mathrm{~m}(1 \mathrm{ft})$ diameter one turn loop of spare cable just below the aerial. In a two aerial installation, the feeders should preferably be run in separate steel tubes to the radio room. If this is not possible, then a minimum separation of $0.3 m$ (1 ft) must be maintained between the foeders, and these must be clipped or taped at regular intervals to suitable supporting structures.

Take great care to avoid damaging the feeder cable outer sheath. Do not run the cable over sharp edges, or through holes in panels without protective glands. The minimum radius to which this cable can be bent is 150 mm (6 in). Since the polythene insulation has a low melting point, do not run the feeders over or near hot surfaces such as steam pipes or exhaust pipes.

In the radio room, cut the feeder cables to the required length, allowing sufficient for the unit to be hinged out from the frame for servicing or faultfinding purposes. Ensure that the feeder from the higher aerial is routed to the single frequency aerial socket on the unit. *NOTE If the Sealand 66 is being installed on a vessel which is already fitted with 75Ω aerials and feeders, a $75 \Omega / 50 \Omega$ matching unit type 11215A must be added in series with each feeder (at the transmitter/receiver end).

2.5.3 Assembly of N-Type Coaxial Plugs

The aerial feeder cables are connected to the transmitter/receiver aerial sockets by means of $50 \Omega \mathrm{~N}$-type coaxial plugs. It is important to note that these connectors are available in both 50Ω and 75Ω versions. These are NOT interchangeable, the former having a larger diameter centre pin than the latter. Use only 50Ω connectors in the Sealand 66 installation, e.g. Greenpar GE 15015C1 (Redifon stores index MX502).

Referring to Fig. 2.5, unscrew the clamp nut from the plug body and remove the parts shown in (A). The method of fitting the plug to the feeder cable is as follows.
(i) Strip the outer PVC sheath from the cable for a distance of $7 \cdot 1 \mathrm{~mm}$ (9/32in) as shown at (B); take care to avoid damaging the braid. NOTE. When using UR76 cable (ref. 1K5) with GE15055C10 plug (Redifon stores index MX) for Duplexer output connections, this distance must be increased to $8.7 \mathrm{~mm}(11 / 32 \mathrm{in})$.
(ii) Comb out the braid and taper inwards. Slide clamp nut and plain gasket over the outer sheath.
(iii) Fold back the braid and insert ferrule between dielectric and braid, trapping the braid between outer sheath and ferrule (C). Trim off surplus braid (D).

```
    (iv) Cut off the dielectric to 0.4mm (1/64in) from face of ferrule
        (C); take care to avoid damaging the centre conductor. Twist
        the strands together and check that length of centre conductor
        protruding from dielectric is 6.Omm (15/64in).
    (v) Tin the centre conductor, avoiding the use of excessive heat.
(vi) Slide rear insulator over the dielectric to butt against the
    ferrule.
(vil) slide centre contact (pin) over the centre conductor. Hold
    contact and cable tightly together, with shoulder of contact
    pressed against rear insulator. Solder contact securely to centre
    conductor, avoiding the use of excessive heat (D). Remove surplus
    solder from outside of contact.
(viii) Slide plain gasket and clamp nut up to the ferrule, trapping the
    braid, and push the sub-assembly into the plug body as far as it
    will go.
    (ix) Engage clamp nut in the plug body and tighten. Hold the plug and
        cable securely and tighten clamp nut down hard.
```


2.5.4 Single Aerial Installations

On some smaller ships which require single aerial working, the installation may be modified as follows.

If simplex operation only is acceptable, single aerial working can be provided by means of a diode switching circuit which is built into the transmitter/receiver. This is brought into operation by the addition of modification kit 11118 B . On early equipments, up to serial no. 149 , this diode switch is added separately when required (modification kit 11118A). It is always preferable for these modifications to be fitted at the factory, or by the local depot/agent. In this way, additional on-board installation work and system testing will be avoided.

Installation of the single aerial and feeder follows the general guidelines given in sections 2.5 . 1 and 2.5 .2 above. The feeder cable is connected to the S / F aerial socket on the transmitter/receiver; no external connection is made to the D / F socket.

Where duplex operation is required with a single aerial (International band only) the installation must include a Duplexer DXU66. The aerial feeder cable is connected to the Duplexer input socket. Two additional lengths of 503 feeder cable, terminated at both ends with N-type coaxial plugs, are then necessary to connect the Duplexer output sockets to the S/F and D/F aerial sockets on the transmitter/receiver. Full details of Duplexer installation and connection will be found in section 2.7.7.

The use of a Duplexer introduces a 1.5 dB insertion loss on the transmit band. If a long feeder cable is also employed, excessive power
losses can result. For example a 46 m (150ft) length of UR67 cable would introduce a further 3 dB loss, resulting in a total power loss of 4.5 dB between the transmitter output and the aerial.

In these circumstances, it is recommended that a colinear aerial be used. This type of aerial has a typical power gain of 3.8 dB , which would offset the losses due to the Duplexer and feeder cable. Redifon Marine Division will supply details of a suitable colinear aerial for use in these installations.

NOTE. A colinear aerial could also be used in installations requiring only simplex operation (i.e. without Duplexer). However, their use is not generally recommended for 2 -aerial installations due to their length.

2.6 SUPPLY CONNECTIONS

2.6.1 Primary Supply

A 3 m (10ft) long 3-core screened lead is attached to the transmitter/ receiver for connection of the primary supply. This may be a $45-60 \mathrm{~Hz} \mathrm{AC}$ supply of 110-120V (transformer windings in parallel) or 220-240V (transformer windings in series), tappings being provided in 5 V steps. Voltage variations up to $\pm 10 \%$ will not affect the equipment specification.

Before connecting to the supply, check that the links on the DC regulator board are correct for the available supply voltage - see Fig. 7.20(b) for location of this board. The protective cover must be removed for access to these links. Before replacing the cover, check the rating of fuse 7FSi; this should be $2 \cdot 5 \mathrm{~A}$ for $220-240 \mathrm{~V}$ operation and 5 A for $110-120 \mathrm{~V}$.

Supply connections are as follows:-

Brown:	LINE
Blue:	NEUTRAL

Yellow/Green: EARTH
Screen: no connection at supply end

2.6.2 Secondary Supp ly

A $3 m$ (10 ft) long 2 -core screened lead is attached to the transmitter/ receiver for connection of the secondary supply, which serves as a failsafe supply in the event of primary supply failure. The secondary supply should be $24 V$ DC nominal. Voltage variations up to $\pm 10 \%$ will not affect the equipment specification; satisfactory operation will, however, be obtained with supply voltages between $18-34 \mathrm{~V}$.

Both poles of the secondary supply are isolated from the equipment earth. The equipment may therefore be connected to a positive earth, negative earth or floating secondary supply. Connections are as follows:-

Red: supply POSITIVE
Blue: supply NEGATIVE
Screen: no connection at supply end
Operation from a nominal $48 \mathrm{~V} D C$ secondary supply is possible, using an optional battery reversion unit 11202A (to special order only). Reference should be made to the installation instructions supplied with the unit.

2.7 SYSTEM INTERCONNECTIONS

2.7.1 Distribution Boxes

The transmitter/receiver and control units are each supplied with a pair of 3 m (10 ft) long screened multicore cables. Cable glands are Already fitted, and the cables are terminated with fanning strips for connection to the adjacent distribution boxes.

The correct cable entry positions for each unit are indicated on the label inside the distribution box. Remove the cable glands or hole blanking plugs from the appropriate positions and insert the cables into the slots, ensuring that the gland nuts are on the inside of the box (see Fig. 2.6). Slide the glands along the cables to engage with the gland nuts; when these are tightened together the cables are locked in position.

The 4 -core cable connects to terminal strip TS 3 , and the 36 -core cable connects by means of two 18 -way fanning strips to TS1 and TS2. The cable screens are connected to the earthing stud adjacent to the cable entries.

Interconnections between the distribution boxes are made by means of screened 4 -core and 36 -core installation cables (Redifon ref. $4 R$ and M36C respectively). Each distribution box will accept up to 4 pairs of installation cables via 8 cable glands; blanking plugs must be fitted to any unused cable entry positions. When running these cables the usual precautions should be observed i.e. avoid damaging the cable outer sheath; do not run the cables over sharp edges or through holes in panels without protection; do not bend to a smaller radius than 150 mm (6 in); do not run the cables over or near hot surfaces such as steam pipes or exhaust pipes.

The label inside the distribution box indicates how the four sets of connections are arranged. These connections are listed in Table 2.1 below. All cable terminations must be made using the fanning strips supplied. The method of fitting the fanning strips is as follows (see Fig. 2.7).
(i) It is essential that the correct cable gland is fitted over the cable first; it cannot be fitted once the fanning strip is in place.
(ii) Strip the outer PVC sheath from the cable for a distance of 0.3 m (12in).
(iii) Cut the overall tinned copper screen back for a distance of 0.2 m (8in). Comb out the remaining braid and then twist it into the form of a "tail".
(iv) Solder an earthing flag tag (supplied) to the copper braiding "tail".
(v) Strip the PVC insulation from each core for a distance of 8 mm (3/8in).
(vi) Trking each core in turn, in the order given in Table 2.1, twist the conductors and form into a hook. Solder the hook to solder lug(a). (vii) Fold the crimping lugs (b) down over the insulation, clamping the wire and tag firmly together.

Cable	Distribution box		Core colour(s)	Function
	Term.strip	Term.no.		
$\begin{gathered} 36 \text {-core } \\ (\text { M36C }) \end{gathered}$	TS 1	$\begin{array}{r\|} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ \\ 15 \\ 16 \\ 17 \\ 18 \end{array}$	Red Blue Green Yellow White Black Brown Violet Orange Pink Turquoise Grey Red/blue Green/red Yellow/red White/red Red/black Red/brown	```High) 600S transmitter Low \(\mathcal{L}\) audio input Audio common ELU on High) 600 receiver Low \(\int\) audio output +24 V HT OV (volume and squelch) \(\left.\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right\} \begin{aligned} & \text { Remote co } \\ & \mathrm{HT} \text { lines }\end{aligned}\) On/off Transmitter power control Transmitter key +10V \(T_{x}\) Volume Squelch```
	TS 2	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \end{array}$	Yellow/blue White/blue Blue/black Orange/blue Green/blue Grey/blue Yellow/green White/green Green/black Orange/green Grey/green Yellow/brown White/brown Brown/black Grey/brown Yellow/violet Violet/black White/violet	Dual watch A/B line A/B key Signal received Channel inhibited 1st digit inhibit $\left.\begin{array}{l}A \\ B \\ C \\ - \\ D\end{array}\right\}$ Units control lines $\left.\begin{array}{l}\text { E } \\ \mathbf{F}\end{array}\right\}$ Tens control $\left.\begin{array}{l}G \\ H\end{array}\right\}$ lines $\}$ Spare
$\begin{aligned} & \text { 4-core } \\ & (4 R) \end{aligned}$	TS 3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Red Blue Green Yellow	$+24 V($ logic $)$ OV (logic) L/S return \& oV (lin) Loudspeaker feed

Table 2.1 Distribution Box Connections
2.7.2 Local Loudspeaker

Master control units MRC66 require an external loudspeaker (internal speaker is used in the standard control unit). The recommended loudspeaker is Redifon type 11207 A this unit being supplied with a 3 m (10ft) long 2 -core flying lead. For adjacent mounting, this lead is run direct into the control unit via the appropriate cable gland. Connections are made at $T S 8 / 1$ and 4.

Where the loudspeaker is to be installed further from the control unit (e.g. for watchkeeping) terminate the flying lead at a suitable junction box. Run a screened 2-core installation cable (Redifon ref. 2C) from the junction box to $T S 8 / 1$ and 4 ; the installation cable screen should be earthed to the control unit chassis. This cable should not exceed 20 m (65 ft) in length.

2.7.3 Cabin Extensions

Cabin extension units ECU60 and ECU61 provide both simplex and duplex facilities, and can therefore be used for intership R/T calls (this is not possible using an ELU66, which can only provide 2 frequency duplex operation). Cabin extensions are wired directly to the master control from which they are selected.

Extension type ECU61 comprises only an extension handset, without loudspeaker or calling facility. This is intended for mounting in the radio room for crew R / T calls, where calling facilities are unnecessary. Extension type ECU60 includes an internal loudspeaker, and a buzzer for calling purposes.

Each extension unit is supplied with a 3 m (10ft) long screened multicore cable, terminated in a telephone wall block. The use of a screened 12 -core installation cable (Redifon ref. 12C) is recommended for either type of extension. In this way, an ECU61 could be replaced by an ECU60 at a later date with no further installation work. A 6-core cable (Redifon ref. 6C) could, however, be used for the ECU61 if required. Connections are listed in Table 2.2 below the cable screens must be earthed to the control unit chassis.

A wall mounting kit type TAI 100 is available for use with cabin extension units if required.

Cabin extension	```MRC66 terminal strip```	$\begin{gathered} \text { Terminal } \\ \text { no. } \end{gathered}$	Wire colour(s)	Function
Extension 1	TS5	$\begin{array}{r} 1 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	Yellow White Blue/Green Red Turquoise Black Grey Brown Pink	Press-to-talk Microphone Audio common (OV) Earpiece (high) Volume control (wiper) Tx Key Volume control (high) Extension in use Call extension
	TS6	$\begin{array}{r} 9 \\ 10 \end{array}$	Orange Violet	Loudspeaker OV
$\begin{gathered} \text { Extension } \\ 2 \end{gathered}$	TS6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	White Blue/Green Red Turquoise Black Grey Brown Pink	Microphone Audio common Earpiece (high) Volume control (wiper) Tx Key Volume control (high) Extension in use Call extension
	TS7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	Orange Violet Yellow	Loudspeaker OV Press-to-talk
		4	Green	6008 Tx input for base
Table 2.2 Cabin Extension Connections				to Redifon Marine Divis

2.7.4 Bridge Wing Extensions

Bridge wing extensions ECU62 and ECU63 are wired directly to the master control from which they are selected, using a screened 6-core installation cable (Redifon ref. 6C). When using extension unit ECU62 (handset contained in waterproof box) the installation cable is run into the box via an Elkay cable gland. Connections are made to the internal terminal block, using the fanning strip supplied; instructions for fitting the fanning strip will be found in section 2.7.1. The cable screen must be earthed to the box.

Extension handset ECU63, which is not intended for permanent installation on the bridge wings, is terminated in a 6-pole Niphan weatherproof plug. The installation cable is connected to a bulkhead (Redifon stores index S 736); mounted Niphan weatherproof socket type N549/6 the cable screen must be earthed to the socket casting. When the handset is not in use it should be stowed on the bridge, and the protective cap should be screwed onto the socket.

The installation cable connections at the control unit are listed in Table 2.3 below. The two cables from the bridge wings are connected together, colour to colour, using the fanning strips supplied; the cable screens must be earthed to the control unit chassis.

MRC66 terminal strip	Terminal no.	Wire colour	Function	ECU62 terminal no.	ECU63 Pin no. on bulkhead socket
TS8	5	Black	Tx key	19	6
	6	Yellow	Press-to-talk 7	Green	Earpiece low
	9	Red	Earpiece high	17	5
	10	Blue	Microphone low	15	4
	White	Microphone high	18	3	

Table 2.3 Bridge Wing Extension Connections
2.7.5 Bridge Wing Loudspeakers

Bridge wing loudspeakers require the use of one or more amplifiers type 11201A (5W audio output). Recommended weatherproof loudspeakers for this location are Rola Celestion type FG / C, rated at $15 \Omega, 8 \mathrm{~W}$, two of these normally being used in the installation. When connected in parallel, they present the optimum load impedance (7.5Ω) to the amplifier, and are fed with $2.5 W$ each.

In high noise situations 8Ω loudspeakers may be used, with one amplifier type 1.1201 feeding each i.e. 5 W audio input to each loudspeaker.

These loudspeakers are supplied with a 3 m (10ft) long 2-core flying lead. When mounted adjacent to the amplifier, the lead is connected directly to the amplifier output. When mounted remote from the amplifier, terminate the loudspeaker flying lead at a suitable junction box. Run a screened 2-core installation cable (Redifon ref. 2C) from the junction box to the amplifier output; the installation cable screen should be earthed to the amplifier case.

The supply and audio input cable to the amplifier is wired directly to the control unit from which loudspeaker operation is to be selected (bridge). Use a screened 3-core installation cable (Redifon ref. 3C) and make the connections indicated in Table 2.4 below. The cable screen must be earthed to the control unit chassis.

MRC66 terminal strip	Terminal no.	Wire colour	Function
TS8	2	Green	Audio input
	3	Red	$+24 V$ supply
	4	Blue	OV

Table 2.4 Loudhailer Amplifier Input Connections

2.7.6 Exchange Link Unit

Installation of the exchange link unit is covered separately in the EW66 handbook, no. 1007-1.

2.7.7 Duplexer

The Duplexer, type DXU66, should be installed adjacent to the transmitter/receiver, allowing for convenient positioning of the coaxial interconnections between the units. These interconnections are normally made with 50Ω coaxial cable UR67 e.g. lengths of aerial feeder cable 1 K 2 , of maximum length 3 m (10ft). These cables are terminated at both ends with 508 N-type coaxial plugs (Greenpar GE15015C1) two of which are supplied with the DXU66 and two with the MRT66. Instructions for fitting these plugs are given in section 2.5 .3 .

Alternatively, for lengths less than 1 m (3 ft), coaxial cable UR76 (Redifon ref. 1K5) may be used. This will necessitate the use of different coaxial plugs, e.g. Greenpar GE15055C10 (Redifon stores index MX). Fitting instructions for this type of plug are included in section 2.5.3. Note: later models may be supplied with coaxial flying leads already terminated with the correct N-type plugs.

The feeder cable from the single aerial is connected to the Duplexer input socket via the $50 \Omega \mathrm{~N}$-type coaxial plug supplied (GE15015C1); the general installation data given in section 2.5 is applicable.

Supply and control connections to the Duplexer are made via a 3 m (10ft) long 3 -core screened lead attached to the Duplexer. Table 2.5 below lists the connections to be made in the transmitter/receiver unit. Note that these connections (which must be soldered) are made to pins on the circuit boards shown. The cable sheath and screen must be stripped back far enough for the cores to reach these boards without applying any strain on the pins. The cable screen must be earthed to the transmitter/receiver case.

MRT66 connection made at	Pin no.	see Fig.	Wire colour	Function	DXU66 connection TS1
Relay board (7)	11	7.18	Red	+24 V supply	4
Relay board (7) Logic control board (3)	12	7.18	Blue	OV	5

Table 2.5 Duplexer Supply and Control Connections

2. 8 OPT IONAL CONNECTIONS

2.8.1 Radio Room Loudspeaker

A requirement sometimes exists for the radio operator to be able to monitor the receive side of all incoming traffic, irrespective of which control unit is in use. If this facility is required, the master control unit fitted in the radio room is modified by the addition of two links on the MRC linear board as follows:

Pin 14 to TS $1 / 8$
Pin 13 to TS8/1.
Notes

1. The loudspeaker volume will be determined by the Volume control on the selected control unit, the local control being inoperative.
2. When not required, the loudspeaker can be switched off by the ELU switch.

2.8.2 Tape Recorder

If it is required to record the receive side of incoming traffic, tape recorder connections may be made to the 600Ω receiver audio output. Using a screened 2 -core installation cable (Redifon ref. 2 B or 2 C) connect to terminal block \quad TSi/5 and 6 , at the nearest convenient distribution box (terminal 6 is at $O V$, but is not earthy). The cable screen must be earthed.

If recording of transmissions is required, reference should be made to Redifon Marine Projects Division for details.

2.9 INSTALLATION CABLES

A full list of installation cables recommended for use in the Sealand 66 system is given in the table below.

Redifon cable ref.	Cable description
1 K 2	Coaxial feeder cable, type UR67; impedance 50及. $7 / 0 \cdot 74 \mathrm{~mm}$ (7/.029in) inner conductor, polythene dielectric, tinned copper screen and outer PVC sheath. Overall diameter 10.3 mm (0.405 in). Redifon stores index MX2518 [20m (65ft)]; MX2382 [30m (100ft)]; MX2383 [46m (150ft)]. Supplied with 50Ω N-type coaxial plug (MX502) already fitted one end.
1 K 5	Coaxial feeder cable, type UR76; impedance 50R. 14/0. 2 mm ($14 / .008$ in) inner conductor, polythene dielectric, tinned copper screen and outer PVC sheath. Overall diameter 5. Omm ($0 \cdot 20 \mathrm{in}$). Redifon stores index MX2913.

Redifon catild ref.	Cable description
28	2-core overall screened cable to DEF.61-12 part 5. PVC insulated $16 / 0 \cdot 2 \mathrm{~mm}(16 / \cdot 008$ in) cores, PVC sheath and tinned copper collective screen. Core colours red, blue. Overall diameter 6.9 mm (0.27 in). Nato stock no. 6145-99-111-671.. Redifon stores index MX329.
2 C	2-core overall screened cable to DEF.61-12 part \%. PVC insulated $16 / 0 \cdot 2 \mathrm{~mm}$ (16/.008in) cores, tinned copper collective screen and outer PVC sheath. Core colours red, blue. Overall diameter 6.9 mm (0.27 in). Nato stock no. 6145-99-111-6717. Redifon stores index MX336.
2DC*	2-core overall screened cable to Redifon specification OP10210/S. PVC insulated $23 / 0$. 2mm ($23 / 008$ in) cores, tinned copper collective screen and outer PVC sheath. Core colours red, blue. Overall diameter 8.5 mm (0.33 in). Redifon stores index MX207.
3 C	3-core overall screened cable to DEF.61-12 part 5. PVC insulated $16 / 0.2 \mathrm{~mm}$ (16/.008in) cores, tinned copper collective screen and outer PVC sheath. Core colours red, blue, green. Overall diameter $7.2 \mathrm{~mm}(0.28 \mathrm{in})$. Nato stock no. 6145-99-111-6724. Redifon stores index MX37.
3 DC *	3-core overall screened cable to Redifon specification OP10211/S. PVC insulated 23/0. 2 mm (23/008in) cores, tinned copper collective screen and outer PVC sheath. Core colours brown, blue, yellow/green. Overall diameter 9.0mm (0.35in). Redifon stores index MX371.
4R	4-core overall screened cable type 37-3-4R. PVC insulated $37 / 0.315 \mathrm{~mm}$ ($37 / \cdot 012 \mathrm{in}$) cores, tinned copper collective screen and outer PVC sheath. Core colours red, blue, green, yellow. Overall diameter 11.8 mm (0.46 in). Redifon stores index MX113.
6 C	6-core overall screened cable to DEF.61-12 part 5. PVC insulated $16 / 0.2 \mathrm{~mm}$ (16/.008in) cores, tinned copper collective screen and outer PVC sheath. Core colours red, blue, green, yellow, white, black. Overall diameter 8.7 mm (0. 34 in). Nato stock no. 6145-99-111-6735. Redifon stores index MX339.
12 B	12-core overall screened cable to DEF.61-12 part 5. PVC insulated $16 / 0 \cdot 2 \mathrm{~mm}$ (16/.008in) cores, PVC sheath and tinned copper collective screen. Core colours red, blue, green, yellow, white, black, brown, violet, orange, pink, turquoise, grey. Overall diameter 11.0 mm (0.39 in). Nato stock no. 6145-99-111-6744. Redifon stores index MX333.
12 C	12-core overall screened cable to DEF, 61-12 part 5. PVC insulated $16 / 0.2 \mathrm{~mm}(16 / \cdot 008 \mathrm{in})$ cores, tinned copper collective screen and outer PVC sheath. Core colours red, blue, green, yellow, white, black, brown, violet, orange, pink, turquoise, grey. Overall diameter 11.0 mm (0.39 in). Nato stock no. 6145-99-111-6745. Redifon stores index MX2480.

Redifon cable ref.	Cable description
M36C	Miniature 36-core overall screened cable to DEF.61-12 part 4. PVC insulated $7 / 0 \cdot 2 \mathrm{~mm}$ ($7 / .008 \mathrm{in}$) cores, tinned copper collective screen and outer PVC sheath. Core colours red, blue, green, yellow, white, black, brown, violet, orange, pink, turquoise, grey, red/blue, red/green, yellow/red, white/red, red/black, red/brown, yellow/blue, white/blue, blue/black, orange/blue, yellow/green, white/green, orange/green, green/blue, grey/ blue, green/black, grey/green, yellow/brown, white/brown, brown/black, grey/brown, yellow/violet, violet/black, white/violet. Overall diameter 11.2 mm (0.44 in). Nato stock no. 6145-99-110-8643. Redifon stores index MX112.
R1	Flat tinned copper braid $19 \mathrm{~mm}(3 / 4 \mathrm{in})$ wide by $3 \cdot 2 \mathrm{~mm}(1 / 8 \mathrm{in})$ thick. Redifon stores index MX2489.

* cables $2 D C$ and $3 D C$ required only for extensions to $D C$ and $A C$ supply inputs.

2. 10 SFTTING UP
3. 10. 1 Selection of Other Control Units from Master

In positions 1, 2, 3 and 4. the Service switch on the Master control unit (MAC66) energises one of four switching lines. These lines are routed via the interconnection cables to the distribution boxes, and via the attached flying leads to each additional control unit.

Ensure that these control units are switched on only in the required position of the Service switch as follows. At each control unit in turn, disconnect the brown core from TS2/8 (+24V HT); locate the appropriate core, as indicated in the table below, and connect to $T S 2 / 8$. The three remaining cores of this group, together with the brown core, must be insulated and tied back (no connection to these cores).

Master control units used in a secondary role cannot select further control units, but are equivalent to standard control units with extension facilities. Disconnect the brown core from $T S 2 / 8$ and the orange, pink, turquoise and grey cores from $T S 4 / 1,2.3$ and 4. One of these four cores is then connected to $T S 2 / 8$ as indicated in the table below, depending on the True Master switch position in which it is to be selected. The three remaining cores of this group, together with the brown core,must be insulated and tied back (no connection to these cores).

Service switch position in which control unit is to be selected	Core colour to be connected to TS $2 / B(+24 N H T)$
1	Orange
2	Pink
3	Turquoise
4	Grey

2. 10.2 Selection of Exchange Link Unit

Each control unit is fitted with an EU switch, but exchange working must be available only from the radio operator's position. At the required control unit, locate the yellow core in the incoming 36-core cable and connect to TS1/6. In all other control units ensure that this core is insulated and tied back.
2.10.3 Handset Volume Adjustment

The internal volume control associated with each control unit handset is adjusted on final test at the factory, and should not normally require readjustment. Should this be necessary however, proceed as follows.

Unscrew the six nuts at the back of the control unit and withdraw the unit from its case. When a suitable input signal
is available, adjust the handset volume
by means of preset potentiometer 2R33 on the SRC linear or MRC Iinear board. Avoid the use of excessive handset levels, which may cause acoustic feedback through the handset body when duplex working is employed (e.g. on public correspondence calls).

Refit the unit in its case after adjustment, and refit all retaining nuts.

2.10.4 Private Channel Selection

Provision of the required Private channels to customer specification is normally carried out during final test at the factory, or by the local depot/agent. Selection of these channels is performed by means of special integrated circuit (IC) devices, plugged into holders on the Private channel selector board in the transmitter/receiver unit.

These IC's are prepared to Redifon specification $P 29768 / \mathrm{S}$, and are unique to each channel. Channel IC's are available from Redifon Marine Division for any channel in the International band as well as the Private band (see next paragraph). When ordering these IC's the channel number must be specified, e.g. for channel 36 order part no. 36/P29768/S; for channel 91 order part no. $91 / \mathrm{P} 29768 / \mathrm{S}$. The channel number is marked on the top of the device.

On certain double frequency channels in the International and Private bands, single frequency simplex operation is sometimes required on the ship transmit frequency (e.g. for ship-to-ship communication). In this case a suffix 'A' is added to the channel number when ordering, e.g. if channel 18 is to be operated as a single'frequency channel, the required channel IC is part no. $18 \mathrm{~A} / \mathrm{P} 29768 / \mathrm{S}$. Note that these channels can only be selected as Private channels (even though they may be in the International band) since keyboard selection of the channel number will automatically give double frequency operation. This may be clarified by the following examples.
International band:
channel 18 (selected on keyboard as 18)
transmit freq. $156.900 \mathrm{MHz}_{z}$, receive freq. 161.500 MHz
channel 18A (selected as P channel)
transmit and receive freqs. 156.900 MHz
Private band:
channel 91 (selected as P channel)
transmit freq. $157.575 \mathrm{MHz}_{z}$, receive freq. $162 \cdot 175 \mathrm{MHz}$
channel 91A (selected as P channel)
transmit and receive freqs. 157.575 MHz

If required, channel IC's may be prepared on board by carrying a small stock of new uncut IC's type $S N 7442 N$ (e.g. Texas). The preparation of the device for the required channel is a straightforward task and this may avoid considerable delays in ordering and awaiting delivery of precut channel $1 C^{\prime} s$. The pins to be removed for any required channel can be ascertained from Fig. 2.8. After cutting, offer up the IC to the appropriate diagram to check the lead configuration.

To commission a new channel, all that is necessary is to insert the channel IC into the holder on the Private channel selector board corresponding to the required P number of the channel (see Fig. 7.8). P channels should preferably be arranged in ascending order of channel number. No alignment or frequency check is necessary.

Great care must be exercised when inserting the IC, to ensure that the pins are not bent; if adjacent pins short together an incorrect channel may be selected, or the transmitter/receiver may be inhibited. It should be noted that the sockets on the Private channel selector board are designed for a maximum of six insertions.

It is essential that a record of the Private channels fitted to the equipment be displayed in a prominent position adjacent to each control unit. Since these channels are displayed on the channel readout as PO-P9, this will be the only record of the actual channel numbers. Two copies of this chart may conveniently be entered in the tables provided at the end of this chapter.

P number	Channel number	Ship Tx frequency	Ship Rx frequency
PO		M Hz^{2}	MHz_{2}
P1		M Hz^{2}	M ${ }_{2}$
P2		MH_{2}	MHz
P3		M Hz^{2}	MHz
P4		$\mathrm{MH}_{\mathbf{z}}$	MHz
P5		MHz	M Z_{2}
P6		M z	MHz
P7		M z_{z}	$\mathrm{MH}_{\mathbf{z}}$
P8		M z_{2}	MH_{2}
P9		MHz	M Hz^{2}
		MHz	MHz
		MHz	$\mathrm{MHz}_{\mathbf{z}}$

Sealand 66 Record of Private Channels Fitted

$\begin{gathered} P \\ \text { number } \end{gathered}$	Channel number	Ship Tx frequency	Ship Rx frequency
PO		M ${ }_{2}$	MHz
P1		M Hz_{2}	M zz
P2		M Hz	MHz
P3		MHz	MHz
P4		M zz^{2}	MHz
P5		M Hz_{2}	MH_{z}
P6		M Mz	$\mathrm{MH}_{\mathbf{z}}$
P7		M Mz^{2}	M Hz_{2}
P8		MHz	MHz
P9		M Hz^{2}	MHz
		MHz	MHz
	,	$\mathrm{MH}_{\mathbf{z}}$	MH7 ${ }_{7}$

Sealand 66 Record of Private Channels Fitted

Handset Rest SGB B.107364-1

Fig.2.3(b) Fixing Centres for Sealand 66 Units

General note 5 indicates cable supplied attached to unit.

Supply Arrangements and Aerial Options

Fig. 2.2

Distribution Box 11128A

Duplexer DXU66

Transmitter/Receiver MRT66

Fixing Centres for Sealand 66 Units

Fig.2.3(a)

Bridge Wing Extension ECU62

Extension Loudspeaker 11207A

Notes and key

NOTES

1. Aerial type : unity gain sleeved dipole.

Radiating element encased in parallel glass fibre tube, packed
with plastic foam.
2. Weight $1.4 \mathrm{~kg}(3 \mathrm{lb})$

Wind loading approx. 1.9 kg at $100 \mathrm{~km} / \mathrm{hr}$ (4 lb at 60hph)
Frequency range $156-163 \mathrm{MHz}$
Impedance 50
Resistance check: aerial type DO/50N (normally supplied) registers open circuit to DC. Alternative type may be supplied which is short circuit to DC (check with Redifon Marine Division).
5. VSWR check: with each aerial connected in turn to fransmitter (50§)
reading should not exceed 1•8:1.

KEY TO DIAGRAM
Clamp only at coloured marker hands. Colour of these bands indicates aerial impedance : red $=50 \Omega$

Ensure minimum projection of support post above upper clamp.
Matching stub terminates in $50, \mathrm{~N}$-type jack, for connection of feeder cable. Stub length must not be altered.

Connector threads should be coated with suitable silicone grease e.g. Midland Silicones type MS4 (Redifon stores index G88). Do not grease centre pin or outer sheath of cable.

Protective sleeves fitted to matching stub and aerial feeder.
Reduce length of sleeve fitted to feeder so that it fits inside
sleeve fitted to stub. Seal with waterproof tape.

Aerial Mounting Details

Fig.2.4

CLAMP NUT

PLAIN GASKET

ferrule

CENTRE CONTACT

PIUG BODY

(A) Plug Components
(B)

Solder securely here

Fig.2.5 N-Type Coaxial Plug Assembly (GE 15015C)

Figs.2.5, 2.6 and 2.7

Fig. 2.6 Method of Inserting Cables

Fig. 2.7 Fanning Strip Detail

													GUARD BAND 75
													guard BAND 76
05	10	15	20	25	30	35	40	45	50	64	69	74	79

Notes
notes

1. Channel IC's are prepared from stock devices type SN7442N
(e.g. Texas).
2. IC's are viewed from top; ensure that location keyway is positioned as shown.
3. Pins shown k are removed; do not remove p in 8 or pins 11-16.
4. Unwanted pins should be removed as near body as possible, using a sharp pair of side cutters or top cutters. Avoid damaging the body of the device.
5. After cutting, offer up the IC to the appropriate diagram to check the lead configuration.
6. Label should be affixed to top of IC, marked with the channel number. Alternatively, the channel number may be signwritten in white, then coated with clear varnish.
7. An IC incorrectly cut for one channel should be coded with the actual channel number (if appropriate) and retained for possible future use.
8. Channels 01-28 and 60-88 are International and would normally be selected directly at the keyboard. However, if single frequency simplex operation is required on the ship transmit frequency of a double frequency channel in the International band (e.g.

for ship-to-ship communication) this can only be achieved by selecting iit as a Private channel - see note 10. Channels 75 and 76 are guard bands for calling/distress channel 16 , and are inhibited. Channels 29-50 and 89-109 are Private (UK allocation) and may not be available in other countries.

Where single frequency simplex operation is required on the ship transmit frequency of a double frequency channel (International or Private) remove pin 10 from the $I C$, in addition to those indicated in the diagram. Add suffix ' A ' to the channel number on the device. A. complete list of channel frequencies will be found in Table 3.1 (a) International and (b) Private.

3 OPERATING INSTRUCTIONS

FIG. 3.1 SRC66 CONTROLS
FIG. 3.2 MRC66 CONTROLS
3.1 CONTROLS AND INDICATIONS
3.1.1 Standard Control Unit SRC66
3.1.2 Master Control Unit MRC66
3.1.3 Transmitter/Receiver Unit MRT66
3.2 OPERATION FROM MASTER CONTROL UNIT
3.3 EXTENSION WORKING
3.4 OPERATION FROM STANDARD CONTROL UNIT
3.5 DUAL WATCH OPERATION
3.6 EXCHANGE WORKING
3.7 DISPLAY BLANK OR FLASHING

TABLE 3.1 VHF MARITIME SERVICES
(a) International Channels
(b) Private Channels

TABLE 3.2 ORDER OF CHOICE

Fig. 3.1 SRC66 Controls

Fig. 3. 2 MRC66 Controls

3 OPERATING INSTRUCTIONS

3.1 CONTROLS AND INDICATIONS

3.1.1 Standard Control Unit SRC66
(a) ON/OFF SWITCH (3S6)

Switches the transmitter/receiver and control unit on, provided that the supply is switched on at the MRT66. Where the installation includes a master control unit MRC66 in addition to one or more standard control units, only the On/Off switch on the selected control unit is operative.
(b) INDICATOR LAMPS

Indication that the system is switched on is provided at the control unit by a total of six lamps as follows. Two lamps 3LP6, 3LP8 provide illumination via three "windows", enabling the operator to locate the variable controls easily in poor light. Four lamps 3LP10-3LP13 illuminate the keyboard.
(c) DIMMER CONTROL (3R3)

Adjusts the illumination of the control location "windows" and the keyboard. Also controls the brightness of the channel readout display (e) and other indicator lamps.
(d) KEYBOARD (3KB1)

The touch-keyboard controls the frequency generating circuits of the transmitter/receiver. CAUTION. Only one key must be operated at a time, using only a light pressure on the key; high pressures are neither necessary nor desirable. Do not allow sharp objects to come into contact with the keys.

In conjunction with two memory stores, the keyboard allows rapid selection of operating frequencies as follows.

A: Selects operation on channel A (any International channel 01-28 or $60-88$, or any preprogrammed Private channel 29-50 or 89-109. For frequencies see Tables 3.1 (a) and (b) respectively).

B: Selects operation on channel B as above.
DUAL WATCH: Selects dual watch operation on preselected channels A and B.
P: Selects operation on up to 10 Private channels (entered as PO-P9). Private channels are preprogrammed by means of specially prepared integrated circuits (channel IC's) which are mounted in the transmitter/receiver unit (see section 2.10 .4 for details).
CLEAR: This key clearg the channel data from the gelected memory store A or B, enabling a new channel number to be entered.
(e) CHANNEL READOUT (3CRD1, 3CRD2)

Two numeric displays which indicate the selected channel number. On International channels, the actual channel number is displayed; Private channcls are displayed as PO - P9.
(f) Channel 16 Lamp (3LP9)

In addition to the channel readout display, a separate indicator lamp is provided for calling/distress channel 16.
(g) VOLUME CONTROL (gR_{1})

Adjusts receiver 158 a udio output level to the local loudspeaker (internal with SRC66, external with MRC66). The handset volume is preset, but can be adjusted if required by means of an internal preset potentiometer (see section 2.10.3).
(h) SQUELCH CONTROL (3R2)

Anticlockwise rotation of this control mutes the receiver in the absence of an incoming signal. The signal threshold is variable; further anticlockwise rotation requires progressively larger signals to demute the receiver.
(j) PRESS-TO-TALK SWITCH

Operation of this switch (on the handset) switches the transmitter on.
(k) Tx ON LAMP (3LP7)

This lamp indicates that the transmitter is on.
(1) Tx POWER SWITCH (3S7)

Selects transmitter high or low power output. In the HIGH position power output of $20-25 \mathrm{~W}$ is obtained; on LOW this is reduced to less than 1 W . On channels 15 and 17 low power output is automatically obtained regardless of the position of this switch.
(m) ELU SWITCH (3S8)

This switch has three positions as follows:LOUDSPEAKER ON : Normal receiver operation with audio output fed to the handset and the local loudspeaker.

OFF : Normal receiver operation with audio output fed to the handset only.

EU ON : This position of the switch is operative only on the radio operator's control unit. Switches the exchange link unit EW66 on, and connects it to the transmitter audio input and receiver audio output circuits enabling public correspondence calls to be made via the VHF system. The local loudspeaker is switched off in this position. Operating instructions for the EW66/Sealand 66 are given in section 3.6. For further details of the unit, including operation on HF, refer to separate ELU66 handbook 1007-1.

3.1.2 Master Control Unit MRC66

Controls (a) - (m) are as described in section 3.1.1 for the standard control unit. The additional controls listed below are fitted only to the master control unit MRC66.
(n) SERVICE SWITCH (2S1)

This eight position switch is part of the MRC linear board assembly. It provides for selection of the following services CABIN Ext. 1$\}$ Selects cabin extensions type ECU60 or ECU61 which or Ext. 2$\}$ may be (for example) in the radio room (for crew R / T calls) or in the ship's office. The transmitter/receiver is then operated from the selected extension. The MRC66 retains overall control of the system. BRIDGE WINGS: Selects bridge wing extensions type ECU62 or ECU63. The MRC66 retains overall control of the system. LOCAL: In this position, the transmitter/receiver $1=$ operated from the MRC66 handset, with full control of all facilities.
1, 23 or 4: These positions allow selection of up to four standard control units SRC66. © Control of all facilities (except cabin extensions and bridge wings) is then transferred to the selected control unit. The MRC66 retains overall control of the system.
Note. In some installations these switch positions may be used to select secondary master control units MRC66. In this case control of ALL facilities is transferred to the selected control unit. The true master MRC66 always retains overall control of the system, however.
(p) CALL EXT. SWITCH (3S1)

When the Service switch is set to CABIN EXT. 1 or EXT. 2 operation of this switch operates the buzzer in the selected extension unit (ECU60 only).
(q) EXT. IN USE LAMP ($3 L_{1}$)

When the cabin extension handset is lifted, a pair of contacts on the cradle switch turn this lamp on.
(r) BRIDGE WINGS LOUDSPEAKERS SWITCH (3S2)

When the ELU switch is set to LOUDSPEAKER ON and the Service switch is set to LOCAL or BRIDGE WINGS, this switch is operative. In the $O N$ position, the loudhailer amplifier (type 11201A) is switched on, feeding receiver audio output to the bridge wings loudspeakers. Power output up to 5 W is available.
3.1.3 Transmitter/Receiver Unit MRT66

AC SWITCH (6S!)
DC SWITCH (6S2) \}
These switch on the primary $A C$ mains supply and the secondary $D C$ supply respectively. If both supplies are connected, the AC supply takes precedence, with automatic changeover to the (emergency) DC supply if the primary supply fails.

INDICATOR LAMP (6LP1)
Indicates that the transmitter/receiver unit is switched on, and operating from the $A C$ mains supply.
3 .2 OPERATION FROM MASTER CONTROL UNIT
(a) Set the MRC66 controls as follows:

Service switch to LOCAL
ELU mwitch to LOUDSPEAKER ON
Bridge Winge Loudspeakera switch to OFF (toggle up)
Squelch control fully clockwise
Volume control to mid-position
Supply switch to ON
(b) Noise or signals may be heard in the loudspeaker, depending on the channel selection/inhibit circuits (see Note 1). If no audio is present, check that the control location "windows" and keyboard are illuminated (rotate Dimmer control fully clockwise if necessary) ; this will confirm that the transmitter/receiver unit is switched on.
(c) Enter the two most frequently used channels in the A and B memory stores as follows. Assume that these channels are 16 and 28, i.e. both in the International band. Touch key A, then the CLEAR key, followed by 1 and 6; touch key B, then the CLEAR key, followed by 2 and 8. Any attempt to enter a non-designated channel number on the keyboard will cause the display to flash, and transmitter/receiver operation will be inhibited.
(d) Subsequently touching key A or B will automatically select the channel entered in that memory store. The position of the decimal point indicates whether channel A or B is in use.
(e) When it is required to change one of these channels it is only necessary to touch the A or B key as appropriate, then the CLEAR key, followed by the new channel number (but see (f) below). The channel in the other memory store will remain unaltered.
(f) Operation on Private channels (see Note 2) is arranged by means of specially prepared integrated circuits (channel IC's), which are plugged into holders on the Private channel selector board in the transmitter/ receiver unit. Up to 10 of these channels may be fitted, and these are selected as PO - P9. When operation is required on a Private channel (e.g. channel 91) reference must be made to the record of channels fitted which MUST be displayed in a prominent position adjacent to each control unit (for typical chart layout, see page 2-19). On this chart, channel 91 will be 1 isted as (say) P3. To select this channel therefore, touch key A or B as appropriate, then the CLEAR key, followed by P and 3 (see Note 3).
(g) Having selected the operating channel(s), turn the Squelch control anticlockwise until the receiver noise output is just muted. Do not rotate the control any further than necessary, otherwise weak signals in fringe areas may not be received satisfactorily.
(h) The receiver will remain muted until a signal is received on the selected channel. When this occurs, adjust the Volume control as desired.
(j) The bridge wing loudspeakers may be switched on if required by setting the Bridge Wings Loudspeakers switch to the ON position.
(k) To operate the transmitter, first select the required power output level. Note that on channels 15 and 17 , the transmitter output is automatically set to low power irrespective of the $T x$ Power switch setting. Operation of the press-to-talk switch on the handset switches the transmitter on.
(1) On single frequency channels the receiver is switched off during transmission, and the press-to-talk switch must be released for incoming signals to be received. On double frequency channels the local/bridge wings loudspeakers are automatically switched off when transmitting. The receiver remains operational however, and duplex working may be employed, using the handset only. Note that equipments modified for single aerial working (using the internal diode switching circuit) cannot be operated in the duplex mode. NOTES ON SETTING UP CHANNELS

1. When the system is first switched on at the transmitter/receiver, the memory stores of all control units are cleared of any previously entered channel data. This does not apply when subsequently switching between alternative control units, the channel data then being retained for instant recall.
2. If single frequency simplex operation is required on the ship transmit frequency of a double frequency channel in the International band (e.g. for ship-to-ship communication) this can only be achieved by means of the Private channel selector circuits. This must be indicated on the channel chart as an 'A' channel e.g. channel 18A, selected as (say) P4.
3. Any attempt to enter a Private channel number (e.g. 29-50 or 89-109) on the keyboard will cause the display to flash, and transmitter/ receiver operation will be inhibited.
3.3 EXTENSION WORKING
(a) The desired operating channel mat firgt be set up as detailed in paras. 3.2 (c) - (f) above.
(b) Set the Service switch to CABIN EXT. 3 or EXT. 2.
(c) To call the extension, depress the Call Ext. switch; this will operate the buzzer in the extension unit (ECU60 only).
(d) When the extension handset is lifted, a pair of contacts on the cradle switch turn the Ext-In-Uwe lamp on.
(e) Cabin extension units provide both simplex and dupler facilities and can therefore be used for intership R / T calls (this is not possible using an ELW66, which can only provide 2 frequency dup lex operation).
(f) The channel set up on the master control unit may also be worked by one of the bridge wing extensions, by setting the Service switch to BRIDGE WINGS.
(g) The bridge wing loudspeakers may be switched on if required; they will be switched off automatically when tranmitting.

NOTE. Overall control of the system remains with the master control unit during extension working.
3.4 OPERATION FROM STANDARD CONTROL UNIT
(a) If the installation includes a master control unit, the Service switch must be set to position $1,2,3$ or 4 to select the appropriate standard control unit. Control of all facilities (except cabin extensions and bridge wings) is then transferred to the selected control unit.
(b) Operating details are as given in section 3.2 for the master control unit. References to the Service switch and Loudhailer switch are not applicable however, since these are not fitted to standard control units.
(c) Any two channels may be entered in the A and B memory stores of the standard control unit, since these are independent of the master control A and B stores. If channels have previously been entered in the memories, these will be instantly available.

NOTES ON STANDARD CONTROL UNIT

1. Overall control of the system remains with the master control unit which therefore retains priority of operation when necessary.
2. Channels entered in the A and B memories of the master control unit are still available when LOCAL control subsequently re-selected.
3.5 DUAL WATCH OPERATION
(a) Dual watch operation is available at master or standard control units. First set the receiver for normal working as follows:

Service switch to LOCAL $\}$ Master control Bridge Wings Loudspeakers switch to OFF (Toggle up) $\}$ unit only ELU switch to LOUDSPEAKER ON

Squelch control fully clockwise
Volume control to mid-position
Supply switch to ON
(b) Set up the required watch channels in the A and B memory stores as detailed in paras. 3.2(c) - (f) above.
(c) Turn the Squelch control anticlockwise until the receiver noise output on channel A is just muted. Check that channel B is also muted.
(d) Touch the DUAL WATCH key. The receiver will now scan channels A and B at approximately 5 channels/second (about 0.2 seconds/channel). The channel readout display is blanked out during scanning, except for the two A and B indicators (decimal points). Should scanning not occur see notes below.
(e) When an incoming signal is detected on either channel, the receiver stops scanning and pauses for $5-8$ seconds (if the signal duration is less than this, scanning recommences at the end of the signal). During this pause, the channel readout indicates the received channel
number. The position of the decimal point indicates whether this channel is in the A or B memory store.
(f) If it is desired to reply to the call, touch key A or B as appropriate. Normal transmitter/receiver operation will then be obtalned on this channel. The transmitter cannot be operated when the dual watch facility is in use.

NOTES ON DUAL WATCH

1. If an inhibited channel is entered in memory A or B (warning given by flashing display) then dual watch scanning will not be available. Operation of the DUAL WATCH key will simply give fixed operation on channel A or B, whicever key was last operated.
2. If the installation includes a Duplexer type IXXU6G, dual watch sconning will not be available if an ' A ' channel in the Private band is entered in memory A or B, i.e. if it is required to receive on the ship transmit frequency of a double frequency channel in the Private band (this would necessitate operation of the duplexer bypass relays at scanning speed). Operation of the DUAL WATCH key will simply give fixed operation on channel A or B, whichever key was last operated.
3. 6 EXCHANGE WORKING

Exchange working is available only at the radio operator's control
unit (master or standard). The installation must include an exchange link unit ELU66, which is connected between the ship's exchange and a convenient distribution box in the Sealand 66 system.
(a) Set the ELU66 Function switch to VHF.
(b) The pre-arranged Sealand 66 operating chanmel is set up as described in paras. 3.2 (c) - (d) above. Note that the PAX or public correspondence link is available only on double frequency channels in the International band.
(c) With the ELU66 Exchange switch set to R/O TELEPHONE, set the control unit ELU switch to ELU ON.
(d) Call the on-board subscriber and confirm that the correspondence link is set up.
(e) Set the ELUG6 Exchange switch to RADIO. This performs the following functions:
(i) The radio operator's telephone is disconnected.
(ii) The subscriber's telephone is connected to the MRT66 transmitter/ receiver for the $P A X$ call to be made via the VHF system (two frequency duplex operation only).
(iii) The MRT66 transmitter is switched on, and the $T x$ On lamp on the control unit lights.
(iv) The RADIO lamp on the ELU66 lights.
(v) The monitor amplifier in the ELU66 is switched on, enabling both sides of the call to be monitored (if required). The output from this amplifier is fed to an internal loudspeaker, the level being controlled by means of a front panel Volume control.
(f) On completion of the call, the subscriber replaces the telephone handset. Provided that the exchange is arranged for calling party release on the ELU line, dialling tones will not be radiated since only the radio operator, having initiated the call, can clear the exchange.
(g) Return the control unit EU switch to the OFF or LOUDSPEAKER ON position as required. The exchange is then cleared by returning the ELU66 Exchange switch to R/O TELEPHONE.
3.7 DISPLAY BLANK OR FLASHING

The channel readout display is blanked under the following conditions:
(i) When the system is first switched on at the transmitter/receiver.
(ii) Before a channel number is entered on the keyboard (e.g. after operation of the CLEAR key).
(iii) After operation of the first key (tens) the display remains blanked until the second key (units) is operated, i.e. until a complete channel number is entered.
(iv) On dual watch operation, whilst scanning is taking place.

Conditions (i) to (iii) also cause transmitter/receiver operation to be inhibited. Jual watch scanning is indicated by the A and B indicator lamps (decimal points) being lit alternately at about $0 \cdot 2$ seconds/channel. When an incoming signal is received, display blanking is removed, the display then indicating the received channel number. Transmitter operation is inhibited on dual watch.

The display will flash if a non-International channel number is entered on the keyboard, e.g. guard band channels 75 or 76 , Private channels 29-50 or 89-109, or any other non-designated channel number. See Table 3.1 (a) for list of International channels together with transmit and receive frequencies. Private channels must be selected as P channels, the channel code being generated by means of channel IC's (see section 2.10 .4). Refer to the channel chart adjacent to the control unit for details of the Private channels fitted.

If in doubt about the reasons for blanking or flashing of the display, repeat the procedures given in paras. 3.2 (c) to (f) for entry of the two required channels. Regarding operation of the keyboard keys, the following general notes should be observed:
(a) Operate only one key at a time.
(b) Press the key firmly, but without applying excessive pressure.
(c) Keep sharp objects away from the keys.

TARIE ?. 1 VHF MARINE SERVICES
(.1) International Channels

Channe 1 vo.	Transmit Freq. $\left(\mathrm{MHz}_{\mathrm{z}}\right)$	Receive Frea. (MH_{7})	Channel No.	Transmit Freq. ($\mathrm{MHz}_{\mathrm{z}}$)	Receive Freq. (MHz)
Original channels ($50 \mathrm{kHz}_{2} \mathrm{plan}$)			Inter leaved channels (25 kHz plan)		
01	156.050	160.650160.700	60	156.025	160.625
02	$156 \cdot 100$		61	$156 \cdot 075$$156 \cdot 125$	
03	156.150	$\begin{aligned} & 160 \cdot 750 \\ & 160 \cdot 800 \end{aligned}$	62		$\begin{aligned} & 150.675 \\ & 160.725 \end{aligned}$
04	156. 200		63	$156 \cdot 175$$156 \cdot 225$	160.725 160.775
05	156. 250	160.850	64		160.825
06	156. 300	S/F160.950	65	156. 275	$160 \cdot 875$
07	156. 350		66	156. 325	160.925
08	156.400	$160 \cdot 950$ S/F	67	156. 375	S/F
09	156.450	S/F	68	156.425	S/F
10	156. 500	S/F	69	156.475	S/F
11	156. 550	S/F	70	156. 525	S/F
12	156.600	S/F	71	156.575	S/F
13	156.650	S/F	72	156.625	S/F
14	156.700	S/F	73	$\begin{aligned} & 156.675 \\ & 156.725 \\ & \hline \end{aligned}$	S/F
15*	156. 750	S/F	74		S/F
16	156.800	S/F	75	$\frac{156 \cdot 725}{\text { Guard }}$	Band
17*	156.850	$\begin{gathered} S / F \\ 161 \cdot 500 \end{gathered}$	76	Guard	Band
18	156.900		77	156.875	S/F
19	156.950	161.550	78	156.925	151. 525
20	157.000	161.600	79	156.975	161. 575
21	157.050	161.650	80	157.025	161.625
22	157. 100	161.700	81	157.075	151.675
23	157. 150	$161 \cdot 750$	82	157. 125	151.725
24	157. 200	161.800	83	157.175	161.775
25	157. 250	161.850	84	157. 225	161.825
26	157. 300	161.900	85	157. 275	161.875
27	157. 350	161.950	86	157. 325	161.925
28	157.400	162.000	87	157.375	161.975
			88	157. 425	162. 025

Notes

1. These channels may be selected directly on the keyboard.
2. S / F indicates single frequency channel, i.e. receive on ship transmit frequency.
3. Certain double frequency channels may be operated single frequency simplex on the ship transmit frequency (e.g. for ship-to-ship communication). In this case a suffix 'A' is added to the channel number, e.g. channel 18 A transmit and receive frequencies 156.900 MHz .
4. The Sealand 66 is not suitable for use on Continental semi-duplex (1 MHz apaced) channel:。

* Until 1st January 1983, transmitter power output must not exceed $1 \mathbf{W}$ on channels 15 and 17 (transmitter is switched automatically to low power on these channels).
(f. Hrivate Channels (UK Allocation)

J\& A channels may not be available in other countries.

Cheombet No.		Transmit Freq. $\left(\mathrm{MH}_{\mathrm{z}}\right)$	Receive Frea. (M1:7)	Channel No.		Transmit Freq. (MH_{Z})	Receive Freq. (MHz)
jokil, pin	$\begin{gathered} 25 k i 1 \% \\ \text { plan } \end{gathered}$			50 kH , plan	$\begin{array}{r} 25 \mathrm{kHz} \\ \text { plan } \end{array}$		
$\begin{aligned} & 24 \\ & 30 \end{aligned}$	89	$157 \cdot 450$	162.050	40	99	157.975	$162 \cdot 575$
		157.475	162.075			158.000	$162 \cdot 600$
		157.500	$162 \cdot 100$		100	158.025	$162 \cdot 625$
	(9)	157.525	$162 \cdot 125$	41		158.050	162.650
31		157. 550	162. 150	42	101	158.075	$162 \cdot 675$
	91	157. 575	162. 175			158.100	162.700
22		$157 \cdot 600$	$162 \cdot 200$	43	102	158. 125	162.725
	92	157.625	$162 \cdot 225$			158.150	$162 \cdot 750$
$?$		157.650	$162 \cdot 250$		103	-158. 175	$162 \cdot 775$
	9?	$157 \cdot 675$	162. 275	44		158.200	162.800
$3 / 4$		157.700	162. 300		104	158. 225	$162 \cdot 825$
	94	157.725	162. 325	45		158.250	162.850
35		$157 \cdot 7.50$	162. 350		105	158. 275	162.875
	95	157.775	$162 \cdot 375$	46		158.300	162.900
36		157.800	$162 \cdot 400$		106	158. 325	162.925
	96	157.825	162.425	47		158. 350	$162 \cdot 950$
37		157.850	162.450		107	158. 375	162.975
	97	157.875	$162 \cdot 475$	48		158.400	163.000
38		$157 \cdot 900$	162. 500		108	158.425	S/F
	98	157.925	162. 525	49		158.450	S / F
39		157.950	$162 \cdot 550$		109	158.475	S / F
				50		158. 500	S/F

Notes

1. These channels cannot be selected directly on the keyboard, but are selected as P channels, using channel IC's for generation of the channel code (see section 2.10.4).
2. Where permitted on the licence, specific channels in the Private band may be arranged to operate single frequency simplex on the transmit frequency (add suffix 'A' to channel no.)

1
1
1
1
1
1
1
1
1
1
1
1

TABLE 3.2 ORDER OF CHOICE (CHANNEL Nos.)

Choice	Public Correspondence	Port Operations		Intership
		S / F	D/F	
1 st	26	12	20	06
2nd	27	14	22	08
3 rd	25	11	18	10
4 th	24	13	19	13
5 th	23	09	21	09
6 th	28	68	05	70
7 th	04	71	07	72
8 th	01	74	02	73
9 th	03	10	03	69
10th	02	67	01	67
11 th	07	69	04	- 77
12th	05	73	78	15
13 th	84	17	82	17
14 th	87	15	79	-
15th	86	-	81	-

```
4.1 BASIC SYSTEM
    Fig. 4.1 Sealand 66 Basic Block Diagram
4.2 FREQUENCY GENERATION SYSTEM
    Fig. 4.2 Frequency Generation Block Diagram
4.3 CHANNEL CODE GENERATING SYSTEM
    4.3.1 A/B Selection
    4.3.2 International Channels
    4.3.3 Private Channels
    4.3.4 Channel Indication
    4.3.5 Dual Watch
4.4 CHANNEL CODE PROCESSING SYSTEM
    4.4.1 International Channels
    4.4.2 Private Channels
    Fig. 4.3 Channel Code Generating and Processing Block Diagram
4.5 LINEAR CONTROL CIRCUITS
    4.5.1 General
    4.5.2 Supply Switching
    4.5.3 Volume Control
    4.5.4 Squelch Control
    4.5.5 Rx Audio Outputs
    4.5.6 Press-to-Talk
    4.5.7 Tx Power Control
    4.5.8 Tx Audio Inputs
    4.5.9 ELU Switching
4.6 IOGIC CONTROL CIRCUITS
    4.6.1 General
    4.6.2 Keyboard
    4.6.3 Decimal/BCD Encoder
    4.6.4 'Data Present' Pulse Generator
    4.6.5 Steering Logic
    4.6.6 Selection of Channels A/B
    4.6.7 Channel Readout Displays
    4.6.8 Channel }1
    4.6.9 Dual Watch
    4.6.10 Inhibited Channel Recogniser
    4.6.11 Display Blanking and Flashing
    4.6.12 Channel 15/17 Recogniser
    4.6.13 Simplex/Duplex Recogniser
    4.6.14 Private Channel Operation
    4.6.15 Simplex/Duplex Selector
        Fig.4.4 Logic Diagram
```

4.6.16 Channel 00 Recogniser4. 6.18 Duplexer Switching
Fig. 4.5 Logic Diagram
Fig. 4.6 Modified Inhibit Diagram
4.7 PHASE-LOCKED LOOP CIRCUITS
4.7.1 Voltage Controlled Oscillator
4.7.2 Downmixer4.7.3 Variable Divider
4.7.4 Reference Oscillator
4.7.5 Phase Comparator
4.7.6 Completion of VCO Loop
4.7.7 Out-of-Lock Sensor
4.7.8 AF Processing
4.8 RECEIVER CIRCUITS
4.8.1 RF and IF Stages
4.8.2 Audio Stages
4.8.3 Squelch Circuit4.8.4 Function Switching
4.9 TRANSMITTER CIRCUITS4.9.1 Tx Driver
4.9.2 Power Amplifier
4.9.3 Level and Mismatch Detector
4.9.4 Single Aerial Diode Switching
4.10 POWER SUPPLY CIRCUITS
4.10.1 Mains Input and DC Regulator
4.10.2 Operation from DC Supply
4.10.3 Switching Regulator

4 CIRCUIT DESCRIPTION

't. 1 BASIC SYSTEM
A block diagram of the Sealand 66 basic system is shown in Fig. 4. 1. It will be seen that the circuits are divided into transmitter, receiver and frequency generating functions. Briefly, the operation of these circuits is as follows.

The frequency generating system produces two separate outputs with a constant frequency difference of 10.7 MHz . The actual frequencies are dependent on the channel selected by the control unit. One of these signals (in the range $145 \cdot 3-147 \cdot 8 \mathrm{MHz}_{\mathrm{z}}$) supplies local oscillator injection to the receiver circuits. The other signal (156-158. 5 MHz) drives the transmitter.

Assume that the ship transmit frequency of the selected channel is f_{s}. The trangmitter drive signal at frequency f_{s} is fed via the $156-158.5 \mathrm{MHz}$ bandpass filters to the $T x$ driver and PA circuits. The PA output, at a level of $20-25 \mathrm{~W}$ (high power) or 1 W (low power) is fed via the aerial changeover relay and aerial filter to the single frequency aerial socket. Modulation of the transmitter signal is performed in the frequency generating circuits.

The receiver comprises two separate RF/IF strips for single frequency and double frequency channels, with common audio stages. The use of separate receiver strips permits reception of S / F and D / F channels with a single local oscillator injection frequency. The intermediate frequencies of the two strips are $10 \cdot 7 \mathrm{MHz}(S / F)$ and $15 \cdot 3 \mathrm{MHz}(D / F)$. The appropriate receiver strip is energised automatically according to the channel selected.

Local oscillator injection, at a frequency of $f_{s}-10 \cdot 7 \mathrm{MHz}$ is fed to mixers 1 and 2 in the two receiver strips. Received signals from the S / F or D / F aerials are amplified by the respective front end amplifiers and fed to these mixers.

When a single frequency channel is selected, the received signal is fed via the aerial filter and changeover relay. The frequency of this signal is equal to the transmit frequency f_{s}. The wanted output from mixer 1 is the difference frequency
$f_{s}-\left(f_{s}-10 \cdot 7 \mathrm{MHz}_{z}\right)$ i.e. $10 \cdot 7 \mathrm{MHz}_{\text {. }}$
This IF component is selected by a $10 \cdot 7 \mathrm{MHz}$ cryatal filter and applied to the single frequency IF amplifier. After amplification, the IF signal is demodulated and the AF component fed to the audio amplifier. Outputs are provided for the local loudspeaker and the nandset earpiece.

If the selected channel is double frequency, then the received frequency f_{d} is $4 \cdot 6 \mathrm{MHz}$ higher than the transmit frequency, i.e. $f+4 \cdot 6 \mathrm{MHz}$. The wanted output from mixer 2 is the difference frequency $\left(f_{s}+4 \cdot 6 M H z_{z}\right)-\left(f_{f}-10 \cdot 7 M H z\right)$ i.e. $15 \cdot 3 \mathrm{MHz}$. This IF component is selected by a $15 \cdot 3 \mathrm{MHz}_{z}$ crystal filter and applied to the double frequency IF amplifier. After amplification, the IF signal is demodulated and the AF component fed to the andio amplifier as before.

The double frequency receiver signal is normally obtained by means of a separate D / F aerial, but single aerial working can be arranged where necessary. If full duplex operation is required with a single aerial (International channela only) then a duplexer type DXU66 is connected as shown in the inset on Fig. 4.1 .

Alternatively, if simplex operation only is acceptable, then single aerial working can be provided by means of an internal diode switching circuit. The diode switch is incorporated in the transmitter/receiver unit, and is simply linked in when this type of operation is specified (on some early equipments, this modification has to be added). The D / F aerial is omitted when single aerial simplex operation is employed. 4.2 CHANNEL FREQUENCY GENERATION

A block diagram of the frequency generation system is shown in Fig. 4.2. The operating frequency is determined by the voltage controlled oscillator (VCO) which forms part of a phase-locked loop. The VCO runs at the receiver local oscillator injection frequency ($f_{s}-10 \cdot 7 \mathrm{MHz}_{\mathrm{z}}$) in the range $145 \cdot 3-147 \cdot 8 \mathrm{MHz}_{\text {. }}$.

Operation of the phase-locked loop is as follows. An output from the VCO is fed to mixer 3 ; the second input to this mixer is obtained from the downmix oscillator via a tuned filter which selects the fourth harmonic. The mixer input frequencies are therefore:

from VCO	$145 \cdot 3-147 \cdot 8 \mathrm{MHz}$
	$132 \cdot 75 \mathrm{MHz}^{2}$

downmix oscillator $\times 4 \quad 132 \cdot 75 \mathrm{MHz}$
The wanted output from mixer 3 is the difference frequency, which lies in the range $12 \cdot 55-15 \cdot 05 \mathrm{MHz}_{\mathrm{L}}$. This component is selected by filters and fed to the variable divider. The channel coding information from the control unit determines the division ratio of this divider, which lies between 502 and 602. The output from the variable divider, at 25 kHz , is applied to the phase comparator.

In the phase comparator, the variable divider output is compared with a standard 25 kHz reference signal. This is obtained from the $3 \cdot 2 \mathrm{MHz}$ reference oscillator by means of a $\div 128$ reference divider. The phaseerror output from the comparator is then filtered and applied as control signal to the VCO. This control signal adjusts the VCO frequency until the variable divider output is in phase with the reference signal; the VCO system is then in lock.

One output from the VCO is fed as local oscillator injection to mixers 1 and 2 in the single frequency and double frequency receiver strips. A second VCO output is fed to mixer 4 in the transmitter; the output from a 10. $7 \mathrm{MH}_{z}$ oscillator is also fed to this mixer. The wanted output from mixer 4 is the sum frequency $10 \cdot 7 \mathrm{MHz}_{z}+\left(f_{s}-10 \cdot 7 \mathrm{MHz}_{z}\right)$
i.e. the ship transmit frequency f_{g}, which lies in the range $156-158$. 5 MHz . This signal is fed via bandpass filters to the Tx driver and PA stages (Fig. 4.1).

1000-1

Transmitter modulation is achieved by applying the control unit microphone signal via the AF processing circuits to the VCO control line. This modulates the VCO output, the audio modulation being transferred to the transmitter drive signal in mixer 4. The modulation is also present on the local oscillator injection signal fed to the receiver circuits; this causes receiver sidetone to be produced in the presence of a received carrier (i.e. during duplex operation).
4.3 CHANNEL CODE GENERATING SYSTEM

An overall block diagram of the channel code generating and processing systems is shown in Fig. 4.3. The control unit circuits shown on the left of the diagram are common to Master and Standard control units MRC66 and SRC66. Operation of the channel code generating system is described in sections 4.3 .1 to 4.3 .5 below. 4.3.1 A/B Selection

Operation of the A key sets the A / B latch IC6a, b to the A state. The dual watch circuit $\operatorname{IC} 48,49$, 50 (in the MRT66) is thereby set to the A condition (dual watch oscillator switched off) and the A output from thig circuit is fed back to switching circuit $1 C 18$ in the control unit. An output from the switching circuit is applied to the A / B data selectors IC16, IC17 causing them to select the channel data in memory A.

The channel readout diaplays are blanked until a valid channel number has been entered on the keyboard, but the A lamp (decimal point) is illuminated via lamp driver circuit TR5, 6,9.

Similarly, operation of the B key causes the A / B data melectore IC16, IC17 to select the channel data in memory B; the B lamp is then illuminated.

4.3.2 International Channels

Assuming that operation on an International channel is required, the channel number is now entered on the keyboard using the numerical keys. Each numeral is converted to a 4 -digit binary code by the encoder 1C2, IC3. This code is applied on 4 lines (having binary code values of $8,4,2,1$) to each of the four menories IC12-IC15.

Meanwhile, assuming that key A was previously operated, the A output from the A/B latch has also been fed to the "data steering" circuit IC7-IC11. This circuit produces data entry conamans which are fed in turn to IC12 (first digit following the A) and IC13 (A (econd digit). Thus, although the binary coded figures from the keyboard are fed to the inputa of all four memories, only one memory is clocked to accept the incoming data.

This can be summarised as follows:-
Operate key A: 1st figure (tens) entered in memory IC12
2nd figure (units) entered in memory IC13.
Similarly, following operation of key B:
1st figure (tens) entered in memory IC14
2nd figure (units) entered in memory IC15.
The channel coding information from the control unit to the code processing circuits of the MRT66 is carried on a total of 8 control lines as follows:-

4 TENS control lines E-H from memory IC12 (A) or IC14 (B)
4 UNITS control lines A-B from memory IC13 (A) or IC15 (B).
When an International channel is selected, these control lines carry the channelling code directly. The code consists of t wo groups of 4 -digit binary code, corresponding to the tens and units figures of the reauired channel number. The binary code digits (one to each control line) have the values shown below:-

TENS control lines : $H=80, G=40, F=20, E=10$
UNITS control lines: $D=8, C=4, B=2, A=1$
This may be clarified by the following examples. Channel 16 is encoded as 0001, 0110; channel 28 as 0010 , 1000. In this code a " 1 " is equivalent to an energised line, " O " lines being grounded.
4.3.3 Private Channels

Private channels must be selected as PO - P9. If a Private channel number is entered directly on the keyboard using the numerical keys, the channel readout display flashes and the transmitter/receiver circuits are inhibited.

Operation of the P key (following the A or B) applies the
" P " code 1100 to the 4 data lines at the memory inputs. The "data steering" circuit ensures that this code is entered in tens memory IC12 (A) or IC14 (B). The P number is entered in units memory IC13 (A) or IC15 (B).

Generation of the actual channelling code is performed by means of specially prepared integrated circuits (channel IC"s) in the MRT66; this is described in section 4.4.2.
4.3.4 Channel Indication

The A or B channel data on the tens and units control lines is applied to two display driver circuits IC22, 24 and IC25, 23. These circuits energise the appropriate segments of the channel readout displays, thus giving visual indication of the selected channel.

4.3.5 Dual Watch

When the dual watch key is operated, latch circuit IC6c, d switches on the dual watch oscillator and timing circuits IC48, 49, 50 (in the MRT66). The A / B output from this circuit is fed back to switching circuit IC16, IC17
IC18 in the control unit. The A / B data selectors /are thus switched sequentially to accept the channel data in the A and B memories. The channel code output from the control unit, on lines $A-H$, therefore alternates between channels A and B, at 0.2 seconds/channel.

Whilst scanning is taking place, the channel display is blanked, but the lamp driver circuit TR5, 6, 9 illuminates the A and B lamps (decimal points) alternately. When a signal is received on either channel, an output from the receiver squelch circuit is applied to the timing circuit, stopping the dual watch oscillator on A or B as appropriate (up to a maximum of $5-8$ seconds). The display blanking signal is removed for the duration of this pause, thus giving visual indication of the received channel.
4.4 CHANNEL CODE PROCESSING SYSTEM

4.4.1 International Channels

An overall block diagram of the channel code generating and processing systems is shown in Fig. 4.3. The channel coding information from the control unit is applied to the transmitter/receiver unit via 4 TENS control lines E-H and 4 UNITS control lines A-D.

When an International channel is selected, the channelling code is applied direct to these control lines as described in section 4.3.2. These control lines are applied via selector switches IC15, IC16 and CMOS/TTL interfaces IC 33 , IC34 to the variable divider, the tens control lines being routed also via a channel interleaving circuit IC30, 31, 32. This circuit energises the I / L line if channels $60-88$ (i.e. interleaved International channels) are selected. The I / L line is applied to the variable divider together with the units lines and the "modified tens" output lines from the interleaving circuit.

The information carried by these 9 control lines sets the division ratio of the variable divider, in the range 502-602. When channels 60-88 are selected (and the $1 / L$ line therefore energised) the division ratio is increased by 1 compared with channels 01-28.

The division ratio of the variable divider determines the multiple of 25 kHz produced at the output of mixer 3 (Fig. 4.2) in the range 1205515.05 MHz . This in turn determines the VCO frequency and hence the operating frequency of the transmitter and receiver circuits as described in section 4.2.

```
    The simplex/duplex channel recogniser IC51, 52, 53 operates in the
Internationa] band, and supplies an input via IC17 to the S/F-D/F switching
circuit TR13, 14, 15 on the receiver board. This circuit then energises
the single frequency or double frequency receiver strip automatically,
depending on which channel is entered on the keyboard.
    An additional detector circuit IC55, TR13 recognises channels 15
and 17, and automatically switches the transmitter to low power if either
of these channels is selected.
    An inhibit circuit IC 10, 11, 54 prevents transmitter/receiver operation
under the following conditions:
(i) If a Private channel number is entered on the keyboard (these must
    be entered as P charmels - see section 4.3.3).
(ii) If a guard band channel (75 or 76) or other non-designated channel
    number is entered.
(iii)If channel OO is entered, or if no channel number is entered on the
keyboard.
```


4.4.2 Private Channels

When operation is required on a Private channel, the "P" code 1100 is applied to the TENS control lines; this is applied automatically by operation of the P key on the control unit. This code is detected by the "p" recogniser TR5, TR6. The output from this circuit switches the tens and units selectors IC15, IC16 so that they receive the channel code from the Private channel selector board.

The P number encoded on the UNITS control lines is detected by the decoder IC18, 45, 46. This circuit selects the correct plug-in channel IC on the Private channel selector board (up to 10 preset channels may be fitted). The selected channel IC then applies the required channel code to the divider control lines via selectors IC15, IC16. The channelling code is the same as that used for International channels, e.g. channel 29 is encoded as 0010, 1001, channel 87 as 1000, 0111.

Each of these channel IC's comprises an identical integrated circuit diode array. The decoding circuit $I C 18,45,46$ applies HT to the paralleled anodes of the diodes contained in the selected IC (one diode to each control line). The selected IC is precut for the required channel number by disconnecting the internal diodes where " 0 " lines are required (by cutting the appropriate pins from the IC). Diodes not disconnected in this way apply a " 1 " code to the remaining control lines. Full details of channel IC preparation are given in Fig. 2.8.

Operation of the remaining circuits, including the channel interleaver, is as described for International channels. The I/L line, the tens lines modified by the channel interleaver and the units lines are applied to the variable divider. The I / L line is energised if channels 89-109

```
(i.f. Interleaved Private channels) are selected.
    The data carried by these 9 control lines sets the division ratio
of the variable divider, which therefore determines the transmitter
and receiver operating frequencies as before.
    An additional control line from the selected channel IC (Private S/D
line) supplies an input via selector IC17 to the S/F - D/F switching
circult TR13, 14, 15 on the receiver board. This circuit then energises the
single frequency or double frequency receiver strip as appropriate. This
latter facility enables single frequency simplex operation to be obtained
on the ship transmit frequency of a normally double frequency channel if
required (International or Private).
```


4.5 LINEAR CONTROL CIRCUITS

4.7.1 General

Linear control of the Sealand 66 is by means of positive $D C$ voltage levels, provided by the selected control unit (MRC66 or SRC66). The controlling voltages are applied to the transmitter/receiver (MRT66) via the 4 -core and 36 -core interconnecting cables. Other control units in the system are prevented from loading the control lines by means of either blocking diodes or relay contacts.

The 600% audio transmitter input and receiver output lines are connected only to the selected control unit. The signal paths to other control units are blocked by means of field effect transistors (FET's) operated in a "pinched-off" mode. The receiver loudspeaker output is blocked by relay contacts which close only when the particular control unit is selected.

4.5.2 Supply Switching

$A C$ mains input to the transmitter/receiver (Fig. 7.21) is connected via Mains On/Off switch 6S1 and transformer $6 T 1$ to the DC regulator, which produces a nominal +24 V DC supply rail (actual voltage of 26.4 V corresponds to that of a fully charged 24 V battery for compatibility). This supply (via 7FSh) is fed down the brown core of the 36 -core interconnecting cable, and down the red core of the 4 -core cable, to TS $2 / 8$ and TS $1 / 9$ respectively in the system master control unit.

Referring to Fig. 7.29, the supply at $\mathrm{TS} 2 / 8(+24 \mathrm{VHT})$ is connected via the control unit On/Off switch to wafer 'a' of the Service switch S1. This switch routes the supply as described below.

In the LOCAL, BRIDGE WINGS and CABIN EXT. 1 and EXT. 2 positions of the switch, the supply is fed via D7, D8, D4 and D3 respectively to the control unit internal circuits as follows:
(i) to relay RL2, causing contacta RL2-1 and RL2-2 to change over.
(ii) to the carbon microphone bias chain R21, R25, R22, R23.
(iii) to the Tx Power switch 357.
(iv) via R26, R27 to zener diode D24, providing a stable +10V supply for remote volume and squelch $D C$ controlling levels.
(v) to the collector of emitter follower TR10 associated with remote volume control.
(vi) to TR11, TR12 for control of the FET switches in the transmitter and receiver 6008 audio lines.
(vii) via D20 to the red/blue core of the 36 -core interconnecting cable (On/Off function).
The supply on the red/blue core is fed back to the transmitter/receiver,
where it operates relay 7RL2 (Fig. 7.21). The relay contacts change over, applying the $+24 V$ DC supply to the switching regulator (described
in section 4.10 .3). The 45 V and +10 V outputs from this regulator energise the internal circuits in the transmitter/receiver unit.

In positions 1, 2, 3 and 4 of the Service switch (Fig. 7.29) the +24 V supply is routed via the orange, pink, turquoise and grey cores respectively of the ? 6-core interconnecting cable. These cores are picked up by the remote control unit to be selected in each of these switch positions, the necessary connections being made during installation (section 2.10.1). The supply on the orange, pink, turquoise or grey core is then fed via the particular control unit On/Off switch to internal circuits (i) to (vii) as listed above (shown in Fig. 7.25).

Referring to Fig. 7.29 or 7.25 , the supply at $T S 1 / 9[+24 V(\operatorname{logic)}]$ is connected to relay contacts RL2-1. When the particular control unit is selected, these contacts change over and connect the supply to the voltage stabilising circuits TR21, TR22, D33 which power the lamp dimmer and logic supplies. In all other control units in the system, the supply at $T S 1 / 9$ is routed via RL2-1 normally closed contacts and R55 to zener diode D33, thus maintaining a continuous $V_{D D}$ supply of +10 V to the memory circuits This ensures that each control unit retains the channel data entered in its A and B memories, even when it is not providing system control.
4.5.3 Volume Control

The AF level from the receiver (Fig. 7.3) is varied by means of an integrated circuit voltage variable attenuator (IC10) at the input to the audio power amplifier. The variable volume control voltage from the control unit is fed dom the red/black core of the 36 -core interconnecting cable and applied to IC10 via R106. The voltage on the red/black core varies from approximately +7 V for minimum volume to +1 V for maximum volume.

Referring to the MRC linear circuit (Fig.7.29) the volume control voltage is derived as follows. In the LOCAL and BRIDGE WINGS positions of the master control Service switch S1f, the stable +10 V supply across D24 is attenuated by R34, the Volume control 3 R1 and R28. The variable voltage from the wiper of 3 R1 is applied to the base of emitter follower TR1O, the emitter output from this stage being applied via D26 to the red/black core and hence to the receiver.

In the CABIN EXT. 1 and EXT. 2 poaitions of the Service awitch, the local Volume control $3 R 1$ is replaced by the Volume control on the selected extension unit (ECU60 only). Other extension units, which do not include a Volume control, cause a maximum voltage of +9 V to be appliad to the red/ black core, giving maximum attenuation of the receiver 158 output.

The derivation of the volume control voltage is similar on the SRC66 except for the omission of the Service awitch (see Fig. 7.25).

4.5.4 Squelch Control

The squelch circuit in the receiver (Fig. 7.3) includes a junction field effect transistor (FET) TR21, used as a variable series impedance in the potential divider TR21/R115. As the gate potential on TR21 approaches that of the source and drain the impedance of TR21 decreases, thus increasing the overall gain of the noise amplifier IC3c, d. This causes the squelch detector TR9, TR10 to "pinch-off" the muting switch TR4 (an FET) and hence mutes the receiver. The variable squelch control voltage from the control unit is fed down the red/brown core of the 36 -core interconnecting cable and applied to TR21 gate via the network R118, R117, C145, R116.

At the control unit (Fig. 7.29 or 7.25) the squelch control voltage is derived by the Squelch potentiometer $3 R 2$, which is connected across the stable +10 V supply at D24. The wiper of this control is connected via D23 to the red/brown core and hence to the receiver. As the Squelch control is rotated anticlockwise, the voltage on the red/brown core increases from OV for minimum noise amplifier gain (receiver not muted) to +10 V for maximum gain.
4.5.5 Rx Audio Outputs

The loudspeaker audio from the receiver is fed via the yellow core of the 4 -core interconnecting cable to $T S 1 / 8$, the return path being via TS $1 / 7$ and the green core (see Fig. 7.29). In the LOCAL and BRIDGE WINGS positions of the Service switch, the loudspeaker gignal is fed via relay contacts RL2-2 to bank 'a' of the EW switch 3S8. Provided that this switch is set to LOUDSPEAKER ON, the audio is then fed via the normallyclosed relay contacts RL1-1 to the local (watchkeeping) loudspeaker connected between TS8/1 and 4. [The signal is also fed via TS8/2 to the input of the bridge wings loudhailer amplifier (if used). This amplifier is switched on by the +24 V (logic) supply via bank 'b' of the EU switch $3 S 8$ (in the LOUDSPEAKER ON position) the normally-closed relay contact B RL1-2 and the Bridge Wings Loudspeakers switch in the ON position.

When the Service switch is set to CABIN EXT. 1 or EXT. 2 wafer Sia causes relay RL1 to be energised via D6 or D5. Contacts RL1-1 change ver, feeding the receiver audio signal via R5 and wafer Sic to the loudspeaker in the selected extension (ECU60 only). Contacts RLI-2 open circuit the loudhailer amplifier supply, thus switching off the bridge wings loudspeakers.

The 600% audio output from the receiver is fed via the white and black cores of the 36-core interconnecting cable to TS1/1 and 2 (Fig. 7.29), and applied to the FET switches TR14, TR15. When the particular control unit
is selected, transistor switching circuit TR11, TR12 is energised via S1a and $\mathrm{D} 7, \mathrm{D} 8, \mathrm{D} 4$ or D 3 . This circuit switches the FET's TR14, TR15 into the conducting mode, feeding the h00s audio to S1e. This switch then routes the audio signal via preset potentiometers R33, R6, R7 or R10 to the earpiece in the local handset, the bridge wing handset (s) or one of the cabin externsion handsets.

At all other control units in the system, the switching circuit TR11, TR12 is not energised. The FET switches TR14, TH15 are therefore "pinched off", effectively disconnecting the control unit audio circuits from the 600Ω line.

At the transmitter/receiver, the receiver audio output from the muting switch TR4 (Fig. 7.3) is adjusted in level by preset potentiometer R101 and fed to integrated amplifier IC11. The output from IC11 is connected via chassis-mounted transformer 6T2 (Fig. 7.21) to the white and black cores of the 36 -core interconnecting cable and thence to the control unit(s). The nominal line output level from the receiver is OdBm for a received signal of $\pm 3 k H_{z}$ deviation at $1 k H_{z}$.

4.5.6 Press-to-Talk

The transmitter is switched on by the application of a positive voltage on the $T x$ key line (yellow/red core of the 36 -core interconnecting cable).

At the selected control unit (Fig. 7.29) the $+24 V H T$ supply at $T S 2 / 8$ is routed by wafer ' a ' of the Service switch $\$ 1$ as follows. On LOCAL operation the supply is reduced to approximately +21 V by potential divider R20, R24 and fed to the press-to-talk switch on the local handset. On BRIDGE WINGS operation the supply is attenuated by $R 8$, R9 and fed to the press-to-talk switch on the BRIDGE WINGS handset (s). On CABIN EXT, 1 or EXT. 2 , the supply is attenuated by R 3 , R 4 or $\mathrm{R} 1, \mathrm{R} 2$ and similarly fed to the pressm to-talk switches on the respective handsets.

Operation of the press-to-talk switch on the selected handset applies approximately +20 V (logic' 1^{\prime}) to the $T x$ key linc via $D_{2} 8, D_{10}, D_{2}$ or $D_{1, ~ s w i t c h i n g ~}^{\text {, }}$ the transmitter on.

4.5.7 Tx Power Control

Transmitter high power output is obtained by the application of a positive voltage on the $T x$ power control line (green/red core of the 36core interconnecting cable). At the selected control unit (Fig. 7. 29) the +24 V HT supply at TS2/8 is connected to the Tx Power switch. In the HIGH position this supply is fed via $D 22$, to the green/red core.

At the transmitter/receiver, this "high power" instruction (logic'1') is fed
tc the transmitter via the logic control board, where it may be overridden by an automatic "low power" command if channels 15 or 17 are selected (see section 4.6.12).
4.5.8 Tx Audio Inputs

The 600Si audio line from the control unit (Fig. 7.29) is applied via FET switches TR16, TR19, to the red and blue cores of the 36 -core interconnecting cable.

The signal from the local (dynamic) microphone is applied to the amplifier/carbon microphone simulator TR17, TR18, TR20; R49 is the input sensitivity control. In the LOCAL position of the Service switch S1, the output from this circuit (at TR17, TR18 collectors) is fed via Sid and connected across R23 in the bias chain R21, R25, R22, R23. The output from the slider of R23 is applied via $\mathrm{C} 10, \mathrm{~S} 1 \mathrm{~b}$ and C 16 to the FET switch.

In the BRIDGE WINGS, CABIN EXT. 1 and EXT. 2 positions of the Service switch, the carbon microphone at the selected extension is connected via S1d to R23; microphone polarisation is provided by the bias chain R21, R25, R22, R23. The output from the slider of R23 is applied to the FET switch as before.

In the base station version of the equipment, link 33-34 (Fig. 7.29) is removed, giving direct access to the 600% line in the CABIN EXT. 2 position of the Service switch (S1d).

When the particular control unit is selected, transistor switching circuit TR11, TR12 is energised via S1a and D7, D8, D4 or D3. This circuit switches the FET's TR16, TR19 into the conducting mode, feeding the 600Ω audio to the red and blue cores and thence to the transmitter. At all other control units in the system, the switching circuit TR11, TR12 is not energised. The FET switches TR16, TR19 are therefore "pinched off", effectively disconnecting the control unit circuits from the 600Ω line. 4.5.9 ELU Switching

Referring to Figs. 7.29 and 7.31, bank 'b' of the EW switch 3 S8 switches the +24 V (logic) supply, in the ELU ON position, to D29 and D27. D29 connects the supply via TS1/6 to the yellow core of the 36-core interconnecting cable. Note. The yellow core is connected only at the radio operator's control unit (see section 2.10.2) and EL operation cannot be selected from any other control unit in the system.

D27 biasses the switching circuit TR11, TR12 into cut off. This "pinches off" the FET switches TR14, TR15 and TR16, TR19 effectively disconnecting the control unit circuits from the transmitter and receiver 600s lines.

The supply on the yellow core energises the exchange link unit circuits and switches on a pair of FET switches similar to those in the control unit (see Fig. 7.36). The transmitter and receiver 600Ω lines from the MRT66 are therefore connected only to the ELW66, enabling public correspondence calls to be made via the VHF system.
4.6 LOGIC CONTROL CIRCUITS
4.6.1 General

Logic control of the Sealand 66 is by means of fixed positive $D C$ voltage levels (logic ' 1 ' or ' 0 ') provided by the selected control unit. The controlling voltages are applied to the transmitter/receiver via the 36 -core interconnecting cable.

Other control units in the system are prevented from loading the control lines by means of blocking diodes. Channel data entered into the memories of the other control units is retained, however, and is available as soon as these control units are selected. 4.6.2 Keyboard

The touch-keyboard (Fig.7.27 or 7.31) comprises a bank of 15 single pole switches, the wipers of which are connected together and brought out to the COMM terminal. The individual switch contacts are connected to the remote logic circuits, which are energised by the pull-up resistors listed below (see Fig.7.23).

Keyboard contact	Pull-up resistor
A	R19
B	R21
DUAL WATCH	R23
CLEAR	R14
P	R4
0	R1
1	R13
2	R12
3	R11
4	R10
5	R9
6	R8
7	R7
8	R5

In the selected control unit, the $+24 V$ (Logic) supply is connected via relay contacts RL2-1 to stabilising circuit R53, D32, D33 (Fig. 7.25 or 7.29). The " +10 V switched" supply from pin 2 provides base bias to TR1 (Fig. 7.23) and this transistor then acts as a "sink" for the keyboard switched lines listed in the table above (via the COMM terminal). Operation of the keys in the selected control unit thus applies a ' O ' to the
corresponding input lines to the A / B latch, the dual watch latch and the decimal/BCD encoder.
4.6. Decimal/BCD Encoder (Fig. 7.23)

All input lines to the decimal/BCD encoder IC2, IC? are initially at - 10 V ('1' state). Operation of a numerical key applies a 'O' to the appropriate line causing the encoder to generate the $B C D$ code for that numeral. The outputs from the encoder, which are initially at ' O ', are energised ('1' output) as follows:
'1' on IC2a pin $13=1$
'1' on IC 3 a $\operatorname{pin} 13=2$
' 1 ' on IC 3 b pin $1=4$
'1' on IC2b pin $1=8$
Thus the numerals are encoded as follows:

	IC2b pin 1	IC3b pin 1	IC3a pin 13	IC2a pin 13
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

The $B C D$ data from the encoder is applied simultaneously to the inputs of the four memory IC's, IC12, 13, 14, 15, the steering logic ensuring that the channel data is entered only in the correct memory (see section 4.6.5).
4.6.4 'Data Present' Pulse Generator (Fig. 7.23)

The presence of BCD data from the encoder is detected by IC1a and applied to one input of IC4a. The second input to IC4a is derived from the 0 key on the keyboard. Thus when any numerical key $0-9$ is operated, IC4a output changes from ' O ' to ' 1 '.

If there is any contact bounce at the keyboard, this will be reflected in the output of IC4a as well as on the BCD data lines. In order to avoid erratic operation, the memory IC's must not be clocked until after the "key-bounce" period.

The output from IC4a is applied to network R15, C1, which delays the positive-going edge of IC4a output for approximately 10 mS . The delayed ' 1 ' from this network is applied to three inputs of IC4c. Since, at this time. the remaining input of IC4c also has a '1.' applied from IC4b output, IC4c output changes from ' 1 ' to ' 0 '.

The delayed ' 1 ' from R15, $C 1$ is also applied to the input of inverter IC4b. The '0' output from IC4b is applied to network R16, C2, C3 which introduces a further delay of 10 mS (note that C 3 is in parallel with C_{2} for timing purposes). When C_{2} discharges past the gate threshold, IC4C output changes back again from ' O ' to '1'. The output from IC4c is therefore a negative-going ('O') pulse of approximately 10 mS duration, occurring ${ }^{1} \mathrm{OmS}$ after the key is operated.

Positive feedback via IC1b and C3 improves the rise time of the pulse, and the set/reset flip-flop IC5a, b squares up the pulse still further.

Thus, the output from IC5b, which is normally at '1', produces a 'O' pulse 10 mS wide whenever a numerical key is operated, the pulse being delayed by 10 mS from the time of operation of the key. This 'data present' pulse is utilised by the steering logic to clock the appropriate memory IC and thus enter the $B C D$ data from the encoder into that $I C$. 4.6.5 Steering Logic (Fig. 7.23)

The memory IC's IC12, 13, 14, 15 accept input data from the decimal/ $B C D$ encoder output lines only when pins 5 and 6 are at the same logic level, and retain the data while the logic levels are different. One of these inputs is used by the CIEAR circuit and is normally held at ' O '. To enter data therefore, the other input must be fed with a ' O ' while the BCD data is applied.

The first stage of the data steering function is performed by IC7a and c in conjunction with the A/B latch IC6a, b. Operation of the A key produces a 'O' at pin 11 of IC6b which is applied to one input of IC7a. Similarly, operation of the B key puts a 'O' on one input of $1 C 7 c$.

The other input to both of these gates is fed with the 'data present' pulse from IC5b. Thus operation of any numerical key $0-9$ causes IC7a or IC7c to produce a '1' pulse at its output. The pulse width and delay are determined by the output from IC5b, i.e. the pulse is approximately 10 mS wide and is delayed by 10 mS from the time of operation of the key (*). This causes the channel data from the encoder to be entered in either the A memory or the B memory.

The second stage of data steering ensures that operation of the first numerical key enters the BCD data in the tens memory IC12 or IC14. The second key enters the data in the units memory IC13 or IC15. Subsequent attempts to enter further numbers in the same memory will be ignored unless the CIEAR key is operated.

Each of the memory IC's has associated with it a "digit-filled" flipflop. For memory A, IC10a indicates the state of the tens memory IC12 and IC 10b the state of units memory IC13. IC11a and berform the same function for memory B tens (IC14) and units (IC15).

When entering a channel number, the circuits described briefly above operate as follows. Assume that the channel is to be entered in memory A (the memory B circuits are, of course, identical).

Operation of key A produces a 'O' at IC6b output which is applied to one input of IC7b. Operation of the CLEAR key applies a 'O' via D3 to the other input of IC7b. A '1' thus appears at IC7b output, which is applied to pin 6 of IC12 and pin 5 of IC13. This clears the A memories, since pin 5 of IC12 and pin 6 of IC13 already have a '1' applied from the outputs of $I C 9 b$ and c respectively.

The '1' at IC7b output is also applied to pin 4 of IC10a and pin 12 of IC1Ob ("reset" inputs), thus clearing the digit-filled indicators as well as the memories. The circuits are now ready to accept a new channel number.

Note that when the Sealand 66 is first switched on, the network C5, R25 generates a positive pulse which is applied via D10 and D12 to both A and B memories and the digit-filled indicators, clearing them of any previously entered data. A similar network C4, R18, D10 sets the A/B latch IC6a, b into the 'A' condition. This does not apply subsequently when simply selecting alternative control units in the system. In this case the $V_{D D}$ supply at pin 25 is maintained; the memories retain the channel data entered in them and the A / B latch remains in the condition in which it was last set.

Before any numerical keys are operated, the inputs of IC9b and c are as follows:

IC9b pin 8 at 'O' from output of IC7a
pin 1 at '1' from \bar{Q} of IC10a
pin 2 at '1' from \bar{Q} of IC 1Ob
IC9c pin 5 at 'O' from output of IC7a
pin 4 at 'O' from Q of IC 10a
pin 3 at '1' from \bar{Q} of IC $10 b$

When the first numerical key is operated, the output of IC7a produces a 10 mS positive pulse ('1') delayed by 10 mS from the time of operation of the key (see * above). Thus, for the duration of the 'data present' pulse, IC9b has a '1' applied to each input, and the output from IC9b applies a 10 mS ' O^{\prime} pulse to pin 5 of IC12. Since pin 6 is also at ' 0 ', the $B C D$ data from the encoder is entered in IC12 (tens). IC9c does not respond to this pulse since pin 4 is still at ' 0 '.

```
The' 1 'pulse from IC7a is also applied to inverter IC9a which therefore applies a 'O' pulse of the same duration and delay to the clock inputs of the Jh flip-flops IC10a and IC1Ob. These flip-flops are set if the \(J\) input is high during the positive going transition of the clock pulse. This condition occurs at IC \(10 a\) at the end of the 'data present' pulse (i.e. after the first digit is entered in IC12) the \(J\) input being held high by the \(\bar{Q}\) output of IC 1Ob.
IC1Oa is now set, indicating "digit filled". The \(Q\) and \(\bar{Q}\) outputs from IC10a change over and the conditions at IC9b and \(c\) inputs are now as follows:
ICOb pin 8 at 'O' from output of IC7a
pirl 1 at 'O' from \(\bar{Q}\) of IC10a
pin 2 at 11 ' from \(\bar{Q}\) of IC \(10 b\)
IC9c pin 5 at 'O' from output of IC7a
pin 4 at '1' from \(Q\) of IC \(10 a\)
pin 3 at 11 ' from \(\bar{Q}\) of IC 10 b
Operation of the second numerical key again applies a 'data present' pulse to IC9b and \(c\). Thus, for the duration of this pulse, IC9c has a '1' applied to each input (IC9b does not respond to this pulse. since pin 1 is at 'O'). In turn IC9c applies a 10 mS ' \(O\) ' to pin 6 of IC13, the BCD data from the encoder therefore being entered in IC13 (units).
At the end of the 'data present' pulse, IC10b is set, indicating "digit filled". The \(\bar{Q}\) outputs of both flip-flops are now at \({ }^{\prime} O^{\prime}\), disabling IC9b and \(c\). The tens and units memories of channel \(A\) are now filled and no further data pulses will be accepted.
4.6.6 Selection of Channels A/B
The \(A\) and \(B\) keys control the \(A / B\) latch IC6a, \(b\), but selection of operation on \(A\) or \(B\) channels is governed by the \(A / B\) line fed back from the transmitter/receiver.
Operation of the A key sets the output of IC6b (Fig.7.23) to ' \(O\) '; the B kay gives '1' at this point. This is applied via R30 to TR3, which inverts the signal and provides line drive capability. The collector of TR 3 is connected via D13 to the \(A / B\) key line (blue/black core of the 36-core interconnecting cable). This line carries a ' 1 ' for \(A, ~ ' O\) ' for \(B\).
At the transmitter/receiver, the \(A / B\) key line is connected to pin 3 on the logic control board (Fig. 7.9). This is connected via the decoupling network R84, R23, C11 to one input of IC48d in the dual watch flip-flop IC48. Provided that the other input of IC48d has a '1' applied (i.e. dual watch not selected) the output from IC48c follows the \(A / B\) key input, i.e. \(A=' 1^{\prime}, B=O^{\prime}\).
```

The output from IC48c is fed back down the A / B line (white/ blue core of the 30 -core interconnecting cable) to the selected control unjt: other control units will not respond to this input, due to the absence of the 10 V switched supply.

At the control unit, the A / E line input is connected to $T S 1 / 1$ on the remote logic board (Fig. 7.23). This signal is applied via D17, R56, R55 to the buffer stages IC18a, b. These buffers produce two complementary outputs which are fed via R53, R54 to the A / B data selectors IC16, IC17.

IC16 selects the tens data from either IC12 (A) or IC14(B) and IC17 selects the units data from $I C 13$ (A) or IC15 (B). Channel A data is selected when pin 9 and pin 14 of the selector IC's are at ${ }^{1} 1$ ' and ' ${ }^{\prime}$ ' respectively. Channel B is selected by pin $9={ }^{\prime} 0^{\prime}$, pin $14=11^{\prime}$.

The selected channel data is fed via diodes D20-D27 to the 4 tens control lines E - H arid units control lines A D. These lines are fed via 8 cores of the 36 -core interconnecting cable to the transmitter/receiver (see section $4 \cdot 6.10$).
4.6.7 Channel Readout Displays

The selected A or B channel data is applied via CMOS/TTL interfaces IC22, IC2 to the display drivers IC24, IC25. The outputs from the display drivers energise the appropriate segments of the channel readout displays to form the required numerals.

Selection of a Private (P) channel applies the code ' 1100 ' to the tens lines, i.e.the outputs from IC16 are as follows:
pin 12 at '1'
oin 11 at '1'
pin 10 at ${ }^{\prime} 0^{\prime}$
pin 13 at ${ }^{1} 0^{\prime}$
The 'P' code is detected by D28, D29 turning TR1O on. This turns on TR12 and TR14, which energise the extra segments of the display to form the P character.

When channel A is selected, the output from pin 4 of buffer stage IC18b is at '1'. This is applied via R60 to TR5 base; TR5 therefore conducts and turns on TR6, which lights the A lamp (decimal point in the tens display). On channel B, TR5 and TR6 are cut off. TR9 is turned on, base current flowing via the A lamp and $R 65$, and the B lamp is therefore lit. 4.6.8 Channel 16

If channel 16 is selected, the code on the tens and units lines are as follows:-

Tens: IC16 pin 12 at 'O' pin 11 at ${ }^{\prime} O$ ' pin 10 at '1' pin 13 at $' O$ '

> Units: IC17 pin 12 at ' 0 '
> pin 11 at '1'
> pin 10 at ${ }^{\prime} 1$ '
> pin 13 at ' 0 '

This code is detected by IC2O, IC21 and the output from pin 1 of IC20b changes from '1' to ' 0 '. This turns on TR11, and collector current flow through TR11 turns on TR13. The channel 16 lamp is therefore lit (in addition to channel 16 being displayed on the readout). 4.6.9 Dual Watch

Operation of the DUAL WATCH key on the keyboard sets the dual watch latch IC6c, d (Fig. 7.23) to give a '1' output from IC6d. This is applied as follows:
(i) via D8 to one input of IC7b and IC7d, disabling the CLEAR function (ii) via D6 to IC1b and IC5a in the 'data present' pulse generator, preventing channel data from being entered
(iii) via R34 to one input of IC5d, blanking the display (see section 4.6.11)
and
(iv) via R27 to TR2 which inverts the signal and provides line drive capability.

The collector of TR2 is connected via D11 to the dual watch line (yellow/blue core of the 36 -core interconnecting cable). This line, which is normally at ' 1 ', changes to ' 0 ' when dual watch operation is selected.

At the transmitter/receiver, the dual watch line is connected to pin 2 on the logic control board (Fig. 7.9). This is connected via the decoupling network $\mathrm{R} 83, \mathrm{R} 22, \mathrm{C} 10$ to the dual watch circuits $\mathrm{IC} 48,49,50$. The dual watch oscillator IC50 is switched on via inverter IC48a and IC49d. The $2 \cdot 5 \mathrm{H}_{2}$ output frompin 4 of IC50b is applied to IC48, which ignores the A/B key line and switches between the A and B states at the oscillator frequency.

The output from IC48c thus alternates between ' 1 ' for channel A and ' O ' for channel B at approximately 0.2 seconds/channel. This is fed down the A / B line (white/blue core of the 36 -core interconnecting cable) to the selected control unit; other control units will not respond to this signal due to the absence of the +10 V switched supply. At the control unit, the A / B line input is connected to TS1/1 on the remote logic board (Fig. 7.23) and selects alternate operation on channels A and B.

The output from inverter IC48a (Fig. 7.9) is also applied via R63 to TR9, turning this transistor on. This applies a ' O ' to the Tx inhibit line, which is applied to the function switching circuits on the receiver board (section 4.8.4). Transmitter operation is therefore inhibited on dual watch.

When a signal is received on either channel A or channel B, the squelch circuit (section 4.8.3) applies a 'dual watch pause' signal to pin 4 of the logic control board (Fig. 7.9). This input, which is normally at 'O', changes to '1' on receipt of a signal and triggers the pause timer IC49. The output from IC49 stops the dual watch oscillator IC50 for a maximum period of 5-8 seconds (determined by $C 13, \mathrm{R}$), during which time the A / B line remains on this channel.

A 'signal received' instruction is also taken from the output of IC49 and fed down the orange/blue core of the 36 -core interconnecting cable to the selected control unit ('1' = signal received). At the control unit, this instruction is applied via $\mathrm{TS} 1 / 2$ on the remote logic board (Fig. 7.23) to one input of IC5c. This causes the channel readout display blanking to be removed, the received channel number then being displayed (see section 4.6.11).

At the end of the pause period, timer IC49 (Fig. 7.9) is automatically reset. Oscillator IC50 is switched on again and dual watch scanning recommences. If the signal duration is less than the maximum timer period, IC/49 is reset by the dual watch pause input going to ' O^{\prime} ' and scanning resumes immediately.

The dual watch latch ICGc, d (Fig. 7.23) can be reset for normal operation by any of the following functions:
(i) operation of the A key resets via $D 7$
(ii) operation of the B key resets via D9
(iii) selection of an inhibited channel in memory A or B causes a ' 1 ' to be fed back from the transmitter/receiver on the channel inhibit line (section 4.6.10). This is applied at $T S 2 / 10$ and resets the latch via D_{16} 4.6.10 Inhibited Channel Recogniser

The channel data from the selected control unit is applied to the tens control lines $E-H$ and the units control lines A-D. The lines are routed to the transmitter/receiver via 8 cores of the 36 -core interconnecting cable (see Figs. 7.23 and 7.21) and connect to pins A - H on the logic control board (Fig. 7.9). The control lines are decoupled by the pi-networks shown and applied to the International/Private channel selectors IC15, IC16 (see section 4.6.14).

The data on the control lines is inspected by the inhibited channel recogniser comprising IC 10, IC11, IC54 with part of IC 12, IC55. The output from pin 15 of IC54 is normally at ' 1 ', turning TR7 on via R65, R61. The collector of $T R 7$ is connected via the channel inhibited line (green/blue core of the 36 -core interconnecting cable) to the selected control unit.

At the control unit, this line is connected to $T S 2 / 1 C$ on the remote logic board (Fig. 7.23) and hence via D19 and R58 to the +10V switched HT line (present only in the selected control unit). Thus TR7 collector
(Fig. 7.9) and the channel inhibited line are normally held at ' O^{\prime}.
when the inhibited channel recogniser detects channels 29-59, 75, 76 , or $89-99$ the output from pin 15 of IC54 changes to 'O' (Note: channels numbers above 100 cannot be selected on the numerical keys since only two digits are available). This output turns TR7 off and the channel inhibited line therefore carries a' ' ' This performs the following functions in the control unit (Fig.7.2?):-
(i) A '1' is applied to pin 8 of IC 38 c , causing the channel readout display to flash
(ii) The dual watch latch IC6c, d is reset via D16 and TR4, and dual watch operation is therefore not available.

At the transmitter/receiver, the ' 0 ' output from pin 15 of IC54 (Fig. 7.9) is also applied via D11, D3, R8 to the out of lock sensor in the variable divider circuit (see section 4.7.7). The ' 0 ' output from this sensor is applied to the inhibit line (pin 19) and fed to the function switching circuit in the receiver, where it inhibits transmitter and receiver operation (see section 4.8.4). 4.6.11 Display Blanking and Flashing

Before channel numbers are entered in the A or B memories, the channel readout displays are blanked. This is achieved by IC19 (Fig.7.23) which inspects the outputs of the digit-filled indicators IC1O or IC11 depending on whether channel A or channel B is selected. On channel A the output from the buffer stage $I C 18 b$ is '1' whilst that from IC18a is 'O'; this causes IC19 to observe the \bar{Q} outputs of IC10.

In the absence of tens and/or units channel data pins 11 andor 1 of IC19 have a '1' applied from the \bar{Q} outputs of ICtOa and IC1Ob respectively. This produces a '0' at pins 7 and or 15 of IC19. The outputs from pins 7 and 15 are fed via CMOS/TTL interfaces IC22, IC23 to the zero blanking inputs of the tens and units display drivers (pin 5 of IC24, IC25 respectively).

The latter signal is also fed via D31 to the grey/blue core of the 36-core interconnecting cable (1st digit inhibit line). At the transmitter/ receiver, this signal mutes the equipment until a complete channel number is entered (see section 4.7.7).

The channel readout display is also blanked on dual watch operation, until a signal is received. This function is performed by IC5c, das follows. Operation of the DUAL WATCH key sets the dual watch latch ICGc, d to give a ' 1 ' output from IC6d. This is applied via R34 to one input of IC5d. The other input to IC5d is supplied by the output of IC5c whose inputs (before any signals are received) are:pin 13 at ' O^{\prime} ', pin 12 at '1'.

IC5c output is '1' under these conditions, giving a ' O ' at IC5d output. This blanks the display via IC18d in the flashing oscillator circuit.

Abstract

When a signal is received, pin 13 of IC5c has a '1' applied. The output from IC5c changes to ' 0 ', causing IC5d output to change to ' 1 ', thus removing the display blanking. when the dual watch latch is reset by operation of the A or B key, pin 12 of ICSc is pulled down to ' O^{\prime} via D7 or D9. The output from IC6d also goes to ' O ' on resetting, but this is not applied to IC5d input until after the delay introduced by R34, C7. This ensures that display blanking is maintained (or restored if a signal was being received) for a short period after operation of the key, and serves as an indication that dual watch has been switched off. At the end of this delay period, the displays indicate the selected A or B channel number in the normal way.

[^0]4.1..13 Simplex/Dup lex Recogniser (Fig. 7.9)

The channel data on control lines $A-H$ is also applied to the simplex/duplex channel recogniser comprising 1 C51, 52, 53, with part of IC12. On duplex channels, the output from pin 7 of IC51 is '1'. The output changes to ' O ' when any of the following simplex channels is detected: 06, 08-17, 67-77 (channels 75 and 76 are, of course, inhibited). $A^{\prime} O^{\prime}$ output is also produced on certain channels in the Private band. However any attempt to enter these channels at the keyboard inhibits the transmitter/receiver, and this is therefore of no consequence. The output from the simplex/duplex recogniser is applied to one input of IC 17b in the simplex/duplex selector circuit (section 4.6.15). 4.6.14 Private Channel Operation

When operation on a Private channel is required, the P key on the control unit keyboard is depressed. The decimal/BCD encoder IC2, IC3 (Fig. 7.23) produces the following outputs:-

IC2b pin 1 at '1'
IC 36 pin 1 at '1'
IC 3a pin 13 at 'O'
rC2a pin 13 at 'O'
This code is applied by the steering logic circuits into the A or B tens memory and hence onto control lines E-H.

At the transmitter/receiver, transistors TR5 and TR6 (Fig. 7.9) detect the ' 1100 ' code and are turned on. The voltage level at TR5 and TR6 emitters is thus ' 1 ' on International channels and changes to ' 0 ' on Private channels. This is applied to pin 9 on the International/Private selectors IC15, IC16 and the inverse is applied via IC17d to pin 14 of these selectors.

On International channels therefore, the channel data on control lines A - H is selected and passed on via the interleaving circuit IC30, 31 , 32 to the variable divider. When the P code is detected on lines E - H, selectors IC15, IC16 change over and select the channel data from the output of the Private channel selector board.

The P number encoded on the units lines A - D is applied to decoder IC18, which is fed from a $5 \cdot 6 \mathrm{~V}$ HT supply derived via R64, D15. The decoded output is fed via emitter follower buffers IC45 or IC46 to energise the appropriate channel IC. Note that this circuit will always decode the data on the units lines, but unless the ' P ' code has been detected on the tens lines, the channel IC output will be ignored.

Each channel IC consists effectively of a row of diodes, one to each control line (i.e. 9 in all) the anodes being connected in parallel. The buffer IC45 or IC46 energises the selected IC by applying HT to the anodes.

These I^{\prime} 's, which are initially identical, are cut so as to apply the required channel code to the control lines. The channelling code is the same as that used for International channels, i.e. considering the lines in the order (tens) H - E (units) D - A, channel 29 would for example be encoded as 0010,1001 and channel 87 as 1000,0111 . In this code, a '1' is equivalent to an energised line (diode left connected); 'O' lines are obtained by disconnecting the appropriate diodes (cutting the pins from the IC) the lines then being grounded via R30-R37.

The Private channel data is passed on via selectors IC15, IC16, and the inter leaving circuit $I C 30,31,32$ to the variable divider as before. The ninth diode (pin 10) is connected to the Private channel simplex/ duplex line. This diode is left connected for duplex channels (' 1 ') and removed for simplex (${ }^{\prime} \mathrm{O}^{\prime}$) the line then being grounded via R38. The Private simplex/duplex line is applied to one input of IC17a in the simpex/ duplex selector circuit (section 4.6.15)

Note that if single frequency simplex operation is required on the transmit frequency of a double frequency channel in the International band (e.g. for ship-to-ship communication) this can only be achieved by selecting it as a Private channel - when selected on the keyboard, the simplex/duplex recogniser automatically classes it as a duplex channel. The removal of pin 10 from the channel IC converts the channel from duplex to simplex. Full details of channel IC preparation will be found in Fig. 2.8.
4.6.15 Simplex/Duplex Selector (Fig. 7.9)

Selection of simplex or duplex operation is controlled by IC17 as folllows. Referring to Fig. 4.4 the inputs to IC17a are:-

Pin 1 (Private S / D line) : $\operatorname{duplex}(D)=11^{\prime}, \operatorname{simplex}(S)={ }^{\prime} O^{\prime}$
Pin 2 ('P' detector output): International (I) $=11^{\prime}$, Private $(P)={ }^{\prime} O^{\prime}$ and IC17a output $=$ '1' except on International duplex, when it changes to ${ }^{\prime} \mathrm{O}^{\prime}$.

The imputs to IC17b are:-
Pin 6 (International S / D line) : $D=1^{\prime \prime}, S={ }^{\prime} O^{\prime}$
Pin 5 (inverted ${ }^{\prime} P^{\prime}$ detector) : $P={ }^{\prime} 1^{\prime \prime}, I={ }^{\prime} O^{\prime}$ and IC17b output $={ }^{\prime} 1$ ' except on Private duplex, when it changes to ' 0 '.

These outputs are applied to the inputs of IC17c, and IC17c output is therefore ' O ' except on International duplex or Private duplex, when it changes to ' 1 ' i.e.
simplex $={ }^{\prime} O^{\prime}$
duplex $={ }^{\prime} 1^{\prime}$
This is applied via $D 6$ to the S / D line (p in 13) and fed to the function switching circuit in the receiver, which energisesthe S / F or D / F receiver strip as appropriate (see section 4.8.4).
14.(1.16) Channel 00 Recogniser (Fig. 7.9)

The channel OO recogniser IC29 inspects control lines A.H. If all thest lines are at ' 0 ', the outputs from IC29a and b are both '1'. These are applied to IC3Od which therefore has an output of ' O ' on channel 00 . This is applied via IC13b, IC54 and TR7 to the channel inhibited line (ureen/blue core of the 36 -core interconnecting cable) and this inhibits transmitter/receiver operation. 4.6.17 Interleaved Channel Recogniser (Fig. 7.9)

The tens and units control lines from selectors IC15, IC16 are routed as follows:

Units A - D via CMOS/TTL interface IC34 to the variable divider
Tens E via CMOS/TTL interface IC33 to the variable divider
Tens F, G and H to the interleaved channel recogniser (interleaver)
The interleaver modifies the tens data on these lines such that the division ratio information fed to the divider is the same for interleaved channels 60-109 as for the original (50 kHz spaced) channels $01-50$. It performs this function by adding 20 to channel numbers below 50 and subtracting 40 from channel numbers above 60. The inter leaver outputs on the F^{\prime}, G^{\prime} and H^{\prime} lines, together with the unmodified E line, therefore provide the following information via interface IC33 to the variable divider:

Channel data on tens lines E - H		Modified channel data on lines E, F', G', H'
From keyboard	From Private channel selector (channel IC)	
0 or 60	0 or $60 *$	20
10 or 70	10 or 70^{*}	30
20 or 80	20 or 80	40
-	30 or 90	50
-	40 or 100	60
-	50	70

* These are only selected as Private channels when single
frequency simplex operation is required on the transmit
frequency of a double frequency channel - see section 4.6.14

In addition on channels above 60 , the interleaver gives a ' 1 ' output from pin 10 of IC30c. This is also fed via interface IC34 to the variable divider, where it increases the overall division ratio by 1 , thus producing an inter leaved channel frequency (see section 4.7.3).
1.6.18 Duplexer Switching (Fig. 7.9)

The duplex filter used in Duplexer type DXU66 is intended for use only on the International channels $01-28$ and $60-88$. However, channels 29 and 89 are sufficiently close to this band for them to pass through the filter. The International channel recogniser IC13, IC14 has therefore been simplified by providing it with inputs only from the tens lines. Thus the output from pin 15 of $I C 14$ is ' 1 ' on channels $01-29$ and $60-89$ (in band) changing to ' O ' on channels $30-50$ and $90-109$ (out of band).

When a duplexer is used, link LK2 at IC47b input is disconnected. Referring to Fig. 4.5 the inputs to this gate are then:-

Pin 5 (inverted +10V $T x$ line): $R x={ }^{\prime} 1^{\prime}, T x={ }^{\prime} O^{\prime}$
Pin 6 (from International channel recogniser): in band (I/B) $=11^{\prime}$, out of band $(O / B)={ }^{\prime} O^{\prime}$
and the output from $I C 47 b$ is therefore ' O ' except when transmitting on an out-of-band channel (O/B. Tx) when it changes to ' 1^{\prime}.

The inputs to IC47c are :-
Pin 8 (from simplex/duplex selector): $D={ }^{\prime} 1^{\prime}, S={ }^{\prime} O^{\prime}$
Pin 9 (from International channel recogniser): $I / B={ }^{\prime} 1^{\prime}, O / B=O^{\prime}$ and the output from $I C 47 \mathrm{c}$ is therefore ' O ' except on out-of-band S / F channels $(\mathrm{O} / \mathrm{B} . \mathrm{S})$ when it changes to ' 1 '.

These two signals are applied to the inputs of IC47d, the output from IC47d being '1' in band, changing to ' O ' on out-of-band transmit or out-of-band S / F channels. This is applied via R60 to TR10. which inverts the signal and provides relay drive capability. Thus, the duplexer control output from pin 12 is ' O ' in band (duplexer in circuit) changing to ' 1 ' on out-of-band transmit or out-of-band S / F channels (duplexer bypassed).

When the duplexer is bypassed, the D / F receiver has no aerial feed and must therefore be disabled. This is achieved by D7, which pulls the S / D line at pin 13 down to ' O ' when IC47d output is at ' O ' on out-of-band transmit (Note: on out-of-band S / F channels the S / D line is already at ' O '). The ' O ' on the S / D line is applied to the function switching circuit in the receiver (section 4.8 .4) which removesthe $H T$ from the D / F receiver strip.

The removal of link LK2 when a duplexer is used modifies the action of the channel inhibited circuits as follows. Referring to Fig. 4.6 the output from the inhibited channel recogniser IC54 is ' 1 ' on permitted channels. This turns on TR7 via R65, R61, and applies a '0' to the channel inhibited line at pin 9 (green/blue core of the 36 -core interconnecting cable).

If it is required to work single frequency simplex on the transmit frequency of a double frequency channel in the Private band (e.g. channel 35A) this is achieved by fitting a channel IC prepared as detailed in Fig.2.8. On such channels, IC47c in the duplexer switching circuit applies a '1' to the cathode of D9.

On normal operation, the inverted dual watch line at IC48a output applifs a '0' to D8 cathode. Thus TR11 base is grounded, allowing TRT to be turned on by the ' 1 ' at $I C 5$ 't output, i.e. this channel is permitted.
fowever, if dual watch operation is attempted with this channel in the A or B memory, a ' 1^{\prime} is also applied to D8 cathode. This causes IR11 io be turned on via R66. Collector current flow through R65 then removes the fids bias from TR7, turning this transistor off. This puts a ' 1 ' on the channel inhibited line.

At the control unit, this signal resets the dual watch latch, giving fixed operation on channel A or B, whichever key was last operated. This function is necessary because the duplexer bypass relays are unable to operate at the high repeition rate which would be required if dual watch operation were permitted on this channel.
4.7 PHASE-LOCKED LOOP CIRCUITS
4.7.1 Voltage Controlled Oscillator (Fig. 7.5)

The voltage controlled oscillator (VCO) is a fully encapsulated, factory sealed assembly, which is to be regarded as a replacement item. The circuit diagram of the unit is, however, given in Fig. 7.5 and shows it to comprise oscillator stage TR1 (a dual insulated gate field effect transistor, or IGFET) with a buffer amplifier TR2. A stabilised 5.6V HT line is provided by $R 8, D_{2}$.

The VCO runs at the receiver local oscillator frequency, lying in the range $145 \cdot 3-147 \cdot 8 \mathrm{MHz}$. The actual frequency depends on the division ratio of the divider, this being determined by the channel data from the selected control unit (see Fig. 4.2).

The DC controlling signal for the VCO, derived by the phase comparator (section 4.7 .5) is applied at pins 7, 8 and fed via the loop filters (section 4.7 .6) to pin 1 on the VCO board. This signal is applied via filter $\mathrm{R} 1, \mathrm{C} 1, \mathrm{~L} 1$ to the voltage variable capacitor (varactor diode) D1 in the oscillator circuit and thus controls the oscillator frequency.

The output from buffer amplifier TR2, filtered by the pi-network C12, U4, C13, is fed to a splitter network comprising R9 - R12. This network provides three 50% output signals which are fed via $R 11$ to the receiver mixers, via R10 to the Tx driver and via R12 to the phase-locked loop circuits.

4.7.2 Downmixer (Fig.7.5)

The phase-locked loop signal from the VCO is fed via tuned amplifier stage TR14 to one input of the downmixer TR15. The second input to this mixer is derived from the $33 \cdot 1875 \mathrm{MHz}_{\mathrm{z}}$ crystal controlled dowmixer ogcillator TR13. The oscillator output is fed to tuned filter L14, C56, C 58 , L 15 , which selects the fourth harmonic of the oscillator frequency and passes this component $\left(132 \cdot 75 \mathrm{MHz}_{2}\right)$ to the downmixer.

The difference frequency output from the downmixer varies from $12.55-15 \cdot 05 \mathrm{MHz}$ as the VCO frequency varies between $145 \cdot 3$ and 147.8 MHz. This signal is fed via low pass filter C61, L17, C63, C64 to buffer amplifier TR16 and then to a further low pass filter C65, C67, L19, R76. These filters remove unwanted mixer products from TR15 output.

The "downmixed VCO" signal at pins 11,12 is then fed to the variable divider.
4.7.3 Variable Divider (Fig. 7.9)

Integrated circuits IC6, IC7, IC8 together form a programmable variable divider. The ratio of this divider lies between $502-602$, and depends on the channel information fed into the transmitter/receiver from the selected control unit. The logic control circuits (section 4.6) energise the appropriate control lines $A-D$ and $E-H$ for the desired channel number. This information is fed via the CMOS/TTL interfaces IC 33 , IC34 to the variable divider (UNITS data to IC8, TENS data modified by channel interleaver, to IC7).

The downmixed VCO signal (in the range $12 \cdot 55-15 \cdot 05 \mathrm{MHz}$) is fed via limiting amplifier TR8 to the quad NAND gate IC5. Pulses from pin 6 of IC5 are fed into the divider system at pin 1 of IC4. The output from pin 12 of IC4 is applied to the variable divider input at pin 4 of IC8.

The interleaved channel recogniser (section 4.6 .17) detects channels 60-109, and gives an output from pin 10 of IC30 if one of these channels is selected. This output is applied via CMOS/TTL interface IC 34 to pin 12 of $I C 5$. The variable divider ratio is the same as that for channels 01-50, but one pulse is notched from the output of IC5 to increase the actual division ratio by 1 , and hence give an interleaved channel.

The variable divider output is taken from pin 13 of ICG. The required division ratio is continually reloaded into the system at the end of each divide cycle by means of integrated circuits IC 1, IC2, IC3. The $25 k \mathrm{kHz}_{\mathrm{z}}$ output from the divider system is taken from pin 6 of IC2 and applied to the integrated phase comparator IC9 at pin 1 .
4.7.4 Meference Oscillator (Fig. 7.9)

The reference signal for the phase-locked loop is derived from the $3 \cdot 2 \mathrm{MHz}$ crystal controlled reference oscillator TR12 via the $\div 128$ integrated divider IC44. The 25 kHz output from this divider is fed via CMOS/TTL interface IC34 and leadthrough capacitor C31 to pin 3 of the integrated phase comparator IC9.
4.7.5 Phase Comparator (Fig. 7.9)

The phase comparator IC9 has the following input signals:-
Pin 1 : $25 \mathrm{kHz}_{2}$ variable divider output from pin 6 of IC2
Pin $3: 25 \mathrm{kHz}$ reference signal from the reference oscillator/divider.
The output from IC9 (at the junction of R4, R5) consists of a train of fixed amplitude 25 kHz pulses, the width of the pulses varying according to the phase relationship between the two inputs. These pulses, constituting the phase error signal, are fed via leadthrough capacitor $C 20$ to the VCO circuit to complete the phase-locked loop (see section 4.7.6).

Bias for the comparator is adjusted by means of R54, TR12 in the linear synthesiser circuit (Fig.7.5). This is fed back down the phase error line and applied via R4, R5 to pins 5 and 10 of IC9. 4.7.6 Completion of VCO Loop (Fig. 7.5)

The phase error signal from the comparator, consisting of a train of fixed amplitude, variable width $25 \mathrm{kHz}_{\mathrm{z}}$ pulses, is applied at pins $7,8$. These pulses are applied via 880 to the integrating amplifier comprising TR12 and TR11. In conjunction with R54, TR12 also sets the bias for the phase comparator IC9 (Fig. 7.9) this being fed back down the phase error line.

The recovered DC output from TR11 increases with increasing pulse width of the phase error signal. This "raw" DC is fed via emitter follower TR9 to the active filters comprising TR8, TR7 and TR5 with their associated components. These filters remove unwanted 25 kHz components from the error signal. They also incorporate the 3 kHz roll-off for the transmitter modulation characteristic, the processed AF signal being fed into the loop filters via R38.

The filtered and smoothed DC output from TR5 emitter is applied via network $\mathrm{R}_{1}, \mathrm{C}_{1}, \mathrm{~L}_{1}$, to the voltage variable capacitor (varactor diode) D1 in the VCO circuit. This controls the VCO frequency and thus completes the phase-locked loop. The controlling voltage, measured at TP1, varies from approximately +5 V at the lower VCO frequency of $145 \cdot 3 \mathrm{MHz}$ (D1 capacity about 50 pF) to approximately +6 V at $147 \cdot 8 \mathrm{MHz}$ (about 35 pF).
4.7.7 Out of Lock Sensor

Transistors TR1, TR2 (Fig. 7.9) form an out-of-lock sensor circuit. The phase comparator IC9 produces negative-going pulses which are applied via D_{1}, D_{2} to the base of T 1. The resultant collector current pulses are
integrated by R12, C5, producing a positive potential at TR2 base. The collector of TR2 is connected via leadthrough capacitor $C 33$ to the inhibit int at pin 19. At the receiver (Fig. 7.3) this line is applied to the function switching circuit TR13, 14,15 via pin 8 . The HT supply for TR2 (fig.7.9) is thus derived from the $+24 V$ line (Fig. 7.3) via R31, D2. Under stable loop conditions, the potential at TR2 base is insufficient to turn TR2 on, since the phase comparator pulses are of short duration. The inhibit line carries a '1' in these conditions.

However, when the phase-locked loop is out of lock e.g. during frequency changing, the pulse width average increases. This increases the potential at TR2 base, turning this transistor on. The inhibit line then carries a ${ }^{\prime} O^{\prime}$, causing the function switching circuit to inhibit the receiver via D2 and the transmitter via D3 (see section 4.8.4).

The out-of-lock sensor is also operated in the following conditions:-
(i) Before a channel number has been entered at the control unit, and all control lines $A-H$ are therefore at ' O^{\prime} '. This condition is detected by IC29 and passed via IC30d, IC13b to the inhibited channel recogniser IC54. The output from pin 15 of IC54 applies a ' O ' to the cathode of Dil.
(ii) After entry of the first digit of the channel number and before entry of the second, a first digit inhibit signal is fed from the selected control unit (on the grey/blue core of the 36-core interconnecting cable) to pin 10. This signal ('0') is applied via decoupling network R74, R73, C50 to the cathode of D12.
(iii) Entry of an inhibited channel number at the control unit is detected

* by the inhibited channel recogniser IC54. The output from pin 15 of IC54 applies a 'O' to the cathode of D11.

In any of the above conditions $a^{\prime} O^{\prime}$ is applied via leadthrough capacitor C32 and D3, R8 to the base of TR1 in the out-of-lock sensor. This turns TR1 hard on, and collector current flow through R12 turns TR2 on. This applies a ' O ' to the inhibit line, the function switching circuit then inhibiting transmitter and receiver operation as before. 4.7.8 AF Processing (Fig. 7.5)

The AF signal from the selected source is fed into the transmitter/ receiver on the 6003 Tx audio line (red and blue cores of the 36 -core interconnecting cable). This signal is applied via transformer $T 1$ to the integrated limiting amplifier IC1. The network at IC1 input matches the impedance to the 600Ω line, and provides the necessary pre-emphasis for the transmitter modulation characteristic (TR6 is a preamplifer stage which is not used in this equipment).

Transistor TR1O sets the DC voltage at IC1 output for symmetrical limiting of the amplifier AF output. The output is applied via preset potentiometer $R 48$ (set maximum deviation) to the frequency correction network R51, R55, C42. It is then fed via R38 to the VCO loop active filters TR8, TR7, TR5.

The processed AF signal is thus superimposed on the VCO control line, causing the VCO output to be phase modulated by the microphone signal from the selected control unit. This modulation is transferred to the transmitter signal in the $T x$ driver circuit (section 4.9.1).

4.8 RECEIVER CIRCUITS

4.8.1 RF and IF Stages (Fig. 7.3)

Two similar RF/IF strips are employed for single frequency and double frequency channels, with common AF stages. The appropriate RF/IF strip for the selected channel is energised by the function switching circuit (section 4.8.4).

Signals from the D / F aerial are applied direct to band pasg filter L1-L4, C3-C8. Signals from the S / F aerial are fed via the transmitter aerial filter and aerial changeover relay contacts (see Figs. 7.21 and 7.14) to band pass filter L16-L19, C64-C69.

The filtered D / F aerial signal is amplified by TR1 (a dual insulated gate field effect transistor, or IFGET) and fed to mixer TR2. Local oscillator injection from the VCO is applied to this stage via buffer amplifier TR6. The IF output from this mixer (at $15 \cdot 3 \mathrm{MHz}$) is applied via crystal filter FL1 and tuned amplifier TR3 to the integrated amplifier IC1.

Integrated circuit IC2 comprises the following circuits: IF amplifier and limiter, differential peak detector (demodulator) and AF preamplifier. External tuned circuit L12, C32 forms part of the demodulator circuit. The output from IC2 is a low level AF signal.

The single frequency RF/IF strip is similar, except that the intermediate frequency is $10 \cdot 7 \mathrm{MHz}$. The AF output from IC2 (D/F) or IC6(S/F) is applied to the preset "balance" control R20. The purpose of this control is to equalise the noise levels of the two strips for equal squelch sensitivity on S / F and D / F channels. The following AF stages are common to S / F and D / F channels.
4. 8.2 AF Stages

The low level AF signal from balance control R20 is filtered by two sections of the integrated quad active filter IC3. IC3a is connected an a low pass filter and IC3b as a high pass. These two filters in conjunction with the de-emphasis network R29, C47, shape the overall AF response of the receiver.

The output from the filtering/shaping network is applied to the "squelch" muting switch TR4 (described in section 4. 8.3). Two outputs are taken from TR4. A preset level determined by R101 is applied to integrated amplifier IC11. The output from IC11 is fed via line transformer $6 T 2$ (Fig. 7.21) to the receiver 6009 audio line (white and black cores of the 36 -core interconnecting cable). This line provides receiver audio output for the earpiece of the selected handset. The nominal level on the 6002 line is OdBa for a received eignal of $\pm 3 \mathrm{l} \mathrm{H}_{\mathrm{z}}$ deviation at $1 \mathbf{K H z}$.

The second output from TR4 is applied via a second muting switch TR20 and voltage variable attenuator IC10 (described below) to the audio
power amplifier IC4. This amplifier provides an output of 2 W into 15Ω for the selected loudspeaker (via the yellow and green cores of the 4-core interconnecting cable).

The voltage variable attenuator IC10 provides volume control, the attenuation varying with the voltage applied on pin 2. This voltage is derived from the selected control unit, and applied to the receiver via the red/black core of the 36 -core interconnecting cable. The voltage on the red/black core varies from approximately +7 V for minimum volume to +1 V for maximum volume.

FET muting switch TR20 is normally turned on by R103. When the transmitter is turned on (Tx key line high) TR11 turns on and "pinches off" the FET via D20. The receiver loudspeaker output is therefore muted during transmission.
4.8.3 Squelch Circuit

The squelch amplifier comprises sections c and d of the integrated quad active filter IC3. These are connected as cascaded high pass filters with a cut-off frequency of approximately 8 kHz . Between these two stages, junction FET TR21 is employed as a variable series impedance in the potential divider TR21/R115.

The squelch voltage from the selected control unit is fed down the red/brown core of the 36 -core interconnecting cable and applied via the network R118, R117, C145, R116 to TR21 gate. As the voltage on the red brown core varies from 0 to +10 V (anticlockwise rotation of the Squelch control) the overall gain of the squelch amplifier increases from minimum to maximum.

The noise output from the receiver "balance" control R21 is fed via the squelch amplifier to squelch detector TR9, TR10. In the non-muted condition (minisum squelch amplifier gain) TR9 is held off by R66, and TR10 is therefore also cut off. Thus TR10 collector voltage is high, allowing the muting switch TR4 to be turned on by R31. As the squelch amplifier gain is increased, the filtered receiver noise turns TR9 on. This turns on TR10, and "pinches off" the muting awitch TR4 via D1, muting the receiver.

In the presence of a received signal, the receiver noise is suppresmed. The squelch detector TR9, TR10 is therefore turned off, allowing the muting switch TR4 to be turned on again by R31.

The squelch detector output at pan 20 (logic '1')is also applied to the dual watch circuit, causing the dual watch oscillator to stop scanning when a signal is received (see gection 4.6.9). 4. 8.4 Function Switching (Fig. 7.3)

HT awitching for the S / F and D / F receiver strips is performed by switching circuit TR13, TR14, TR15. The S/D line input to this circuit
(pin 9) is derived from the channel data processing circuits on the control logic board (section 4.6.15). The voltage on this line is OV on S/F channels and $\bar{J} V$ on D / F channels (logic ' O ' and ' 1 ' respectively).

On S / F channels, TR15 is cut off and TR14 is held off by R79. TR13 is turned on by the bias chain $R 77, R 78, D 6, R 76, D 4$, thus energising the S / F receiver strip. On D / F channels, TR15 is turned on and collector current flow through R79, R80 turns TR14 on, thus energising the D / F receiver strip; TR13 is cut off by the D/F HT line via D7, R76, D4. The S / F and $D / F H T$ rails are accessible at pins 36 and 35 respectively, for use in conjunction with the single aerial diode switching circuit (see section 4. 9.4).

Transmitter $H T$ switching is performed by TR11, TR12. The press-to-talk switch on the selected handset applies approximately +20 V (logic' 1^{\prime}) to the Tx key line (yellow/red core of the 36 -core interconnecting cable). This voltage is applied on pin 34 and is fed via the network R73, C108, R71 to TR11 base, turning this transistor on. Collector current flow through R75, R74 turns TR12 on, which performs the following functions:-
(i) +10 V HT is applied via pin 10 to the transmitter circuits (+10 V Ix).
(ii) This supply is also fed down the white/red core of the 36 -core interconnecting cable to the control unit, giving $T x$ On indication via $2 T R 13$ (MRC or SRC linear board).
(iii) The FET muting switch TR2O is "pinched off" via D20, thus switching off the receiver loudspeaker output.
(iv) If a S / F channel is selected, TR13 is cut off via $D 5$, R76, $D 4$, thus switching the S / F receiver strip off during transmission.
When dual watch operation is selected, a OV (logic' O^{\prime}) Bx inhibit output from the dual watch circuit (section 4.6 .9) is applied at pin 25. This cuts off TR11 and prevents the transmitter switch TR11, TR12 from being turned on by the $T x$ key line; transmitter operation is therefore inhibited on dual watch.

The out-of-lock sensor (section 4.7 .7) also provides an input to the function switching circuit. If the VCO loop ig out of lock, or an inhibited channel is selected at the control unit, a $O V$ (logic'o') output from the out-oflock mensor is applied at pin 8. This is connectad vin D3 to TR11 base, cutting this transistor off and preventing the transmitter switch TR11, TR12 from being turned on; it is also applied via D2 to the muting switch TR4, which is therefore "pinched off". In this condition therefore, the transmitter and receiver are both inhibited.

4.9 TRANSMITTER CIRCUITS

4.9.1 Tx Driver (Fig. 7.11)

An output from the VCO , in the range $145 \cdot 3-147 \cdot 8 \mathrm{HHz}$, is applied to buffer amplifier TR1. This signal carries the required transmitter
modulation as described in section 4.7.8. The output from TR1 is fed to diode ring mixer D3-D6. The second input to this mixer is derived from the crystal controlled $10 \cdot 7 \mathrm{MHz}$ oscillator TR2 (a dual insulated gate field effect transistor, or IGFET) via buffer amplifier TR3.

The required component at the mixer output is the sum frequency, in the range $156.8-158.5 \mathrm{MHz}$ (i.e. ship transmit frequency). The mixer output is band pass filtered by $L 4-L 6, C 15-C 17$ to remove unwanted products, and amplified by TR4, TR5. After further band pass filtering by L9-L11, C28-C30, the signal is fed to driver amplifier TR6, TR7. Interstage matching is performed by the network C35, C33, L14, C36.

The output from TR7 is matched to 50Ω by network $\mathrm{C} 4 \mathrm{O}, \mathrm{C} 38, \mathrm{~L} 17, \mathrm{C} 43$, and fed to the power amplifier via damping network R28-R30 (2dB attenuation). The power level at the $T x$ driver output is approximately 100 mW into 50Ω. 4.9.2 Power Amplifier (Fig. 7.14)

The $T x$ driver output is applied to the power amplifier comprising TR10, TR11, TR12, where the signal level is raised to $20-25 \mathrm{~W}$ (on high power). Components $X_{1-X 5}$ are "microstrip" transmission lines, which form part of the interstage matching networks. $X 6$ is a directional coupler, the secondary of which is connected to the level and mismatch detector circuit, described in section 4.9 .3 .

The PA output is fed via aerial changeover relay contacts $R L 1=1$ (relay energised) and low pass aerial filter L36-L38, $480-C 87$, to the single frequency aerial.

In the receive condition (relay $R L 1$ unenergised) the single frequency aerial signal is fed via the aerial filter and normally-closed contacts RL1-1 to the S / F receiver strip (section 4.8.1). Capacitor C79 and PIN diode D13 protect the S / F receiver input against high level signals from the transmitter. The PIN diode is forward biassed via R57 during transmission, and $C 79$ therefore appears as a short circuit across the S / F receiver input. 4.9.3 Level and Mismatch Detector (Fig. 7.14)

Imputs to the transmitter level and mismatch detector, comprising TR13TR17, are derived from the secondary of directional coupler X6. The circuit detects PA forward output power via D11. Excessive forward power turns on TR15 and collector current flow through R53, R54 turns on TR14. This transistor controls the series resistance of TR13. Any tendency for the output power level to increase produces an increase in TR13 resistance and hence reduces the $H T$ supply to $T R 10$ and $T R 11$; a sensibly constant output level is therefore obtained at the power amplifier output.

Reverse power (due to mismatched or damaged aerial or feeder) is detected via voltage doubler circuit D14, D11, C73, C90. Excessive reverse power also turns on TR15 and hence controls the HT supply to TR1O, TR11. These two controling signals combine to ensure that excessive PA dissipation is avoided.

When high power is selected at the control unit, a voltage of Aprrox imateiy $+23 V$ (Jogic '1') is fed down the greerl red core of the st-cor interconneting cable ($T x$ power control line) to the logic control (ircuit in the MRTG, Provided that this "high power" instruction is not uverridden by an automatic "low power" command generated by the logic contro! circuit (section 4.6.12). a voltage of approximately +9 V is applied to the $T x$ power level line at pin 4 . This turns on TR 16 and connects preset potontiometer $R 50$ in circuit at TR15 base. Adjustment of the transmitter high power output level is by means of this potentiometer.

On low power the Txpower level line is at $O V\left(\operatorname{logic}^{\prime} O^{\prime}\right)$, R 50 is effectively disconnected from TR15 base, enabling the detector circuit to be triggered at a lower RF level. In this case the HT supply to TR1O, TR11 is reduced such that the forward power detected via x6 is less than $1 W$. The low power level adjustment is by means of potentiometer R56 in conjunction with TK17.
4.9.4 Single Aerial Diode Switching (Figs. 7.14 and 7.3)

When single aerial simplex only operation is required, the following connections are made:

Pin 18 (PA board) to pin 36 (receiver board)
Pin 13 (PA board) to pin 35 (receiver board)
Also the following coaxial links:
Pins 6,7 (PA board) to pins 11, 12 (PA board)
Pins 17, 16 (PA board) to $C 64, C 63$ (receiver filter, S / F section)
Pins 14, 15 (Pa board) to $C 3, C_{1}$ (receiver filter, D / F section)
Operation of this circuit is as follows. Referring to Fig. 7. 14, when the transmitter is switched on, the PA output is fed via aerial changeover relay contacts $\mathrm{RL} 1-1$ (relay energised) and the aerial filter to the aerial.

In the receive condition, relay $R L 1$ is unenergised and the aerial signal is fed via the aerial filter, the normally-closed contacts RL1-1 and C 99 to the junction of $\mathrm{D} 17, \mathrm{D} 16$.

When an S / F channel is selected, the +10 V supply is applied to pin 18 and forward biasses D17 via R 69 and R67. The aerial signal is therefore connected via D17 to the S / F receiver strip. When a D / F channel is selected, D16 is forward biassed, connecting the aerial signal to the D / F receiver strip.
4.10 POWER SUPPLY CIRCUITS
4.10.1 Mains Input and DC Regulator (Fig. 7.21)

The $A C$ mains input is applied via the Mains On/Off switch $6 S 1$ and fuse 7FS1 to the primary of mains transformer 6T1. Tappings are provided in 5V steps for operation from 110-120V (primary windings in parallel) or 220-240V (primary windings in series).

The secondary voltage from 6T1, rectified by bridge rectifier 6D1$6 \mathrm{D}_{4}$ and smoothed by 6 C 1 , is applied to the DC regulator circuit comprising 7TR1-7TR3 and 6TR1. The common emitter regulator transistor 6TR1 is connected in the negative rail, offering the following advantages over the more conventional positive rail regulated circuit:
(i) It allows a smaller working voltage drop across the series transistor, hence lower dissipation in this transistor.
(ii) It allows the collector (case) of the series transistor to be directly grounded, thus improving the heat dissipation.

The potential divider $7 \mathrm{R} 8,7 \mathrm{R} 9,7 \mathrm{R} 10$, feeds a proportion of the output voltage back to the base of 7 TR3 in the differential comparator circuit 7TR2, 7TR3. The reference voltage for the comparator is provided by zener diode 7D1. Dissipation limiting for the comparator transistors is provided by $7 \mathrm{D} 3,7 \mathrm{R} 7$ respectively.

In operation, current flow through $7 R 6,7 T R 2,7 D 3,7 T R 1$ controls the impedance of series transistor 6 TR1 and hence the output voltage. Thus if the output voltage tends to rise, 7 TR3 is turned harder on and the voltage across 7 R6 increases, reducing the base bias on 7TR2. The controlling current through $7 \mathrm{TR} 2,7 \mathrm{D} 3,7 \mathrm{TR} 1$ is reduced and the series impedance of 6TR1 increases, thereby stabilising the output voltage.

The regulator output voltage (adjusted by means of potentiometer 7R8) is set to be the same as that obtained from a nominal $24 V$ battery when fully charged, i.e. 26.4 V . This ensures that the voltage on the nominal $+24 V H T$ rail in the equipment is the same whether operating from the $A C$ or $D C$ supply input.

Should a direct short circuit develop on the regulator output line, diode 7 D 2 is effectively connected across zener diode 7D1. The comparator reference voltage at 7 TR 2 base $i s$ therefore reduced to approximately 0.6 V , cutting off this transistor. Series transigtor $6 T R 1$ is therefore also cut off, switching off the regulator until the short circuit is removed.

The regulated output from this circuit is applied via $7 F S 3$ to relay contacts 7RL1-1. The output is also connected via diode 7D4 (see note below) to the Mains indicator lamp 6LP1, and to relay 7RL1 which is therefore operated. Contacts $7 \mathrm{RL} 1-2$ change over and connect the $O V$ rail (internal chassis) to the case of the unit. Note that this connection is made only when operating from the $A C$ mains supply.

Contacts 7RL-1 also change over, feeding the nominal +24 V supply via 7 FS4 to the red core of the 4 -core interconnecting cable and the brown core of the 36 -core cable (see section 4.5.2).

When the selected control unit is switched on, the +24 V supply is fed back down the red/black core of the 36-core cable (on/off line) and
operates relay 7RL2. Contacts 7RL2-1 and 2 change over, applying the $+24 V$ supply to the Duplexer DXU66 (if used) and to the switching regulator, energising the MRT66 internal circuits.

NOTE. Diode D4 performs a dual function as follows:
(i) On initial switch-on, it permits a minimum voltage of 0.6 V to be developed at the regulator output enabling the circuit to be selfstarting.
(ii) If a temporary short circuit should occur on the +24 V HT rail whilst operating the equipment on $A C$ mains, $7 D 4$ delays the drop-out of relay RL1 and thus reduces the risk of blowing the DC supply fuse 7FS2.
4.10.2 Operation from DC Supply (Fig. 7.21)

When operation from the secondary $D C$ supply is required (i.e. mains supply fails or is not connected) the nominal 24 V battery supply is connected via 7 FS2 and 7 L 1 to relay contacts $\mathrm{RL} 1-1$ and 2. Surge suppressing diode D5 provides protection against transients on the supply; also, in conjunction with 7 FS2, it protects the equipment against reversed supply polarity.

In the absence of mains supply, relay 7 RL 1 is not energised. The DC supply positive rail is therefore connected via $7 R L 1-1$ to the red core of the 4 -core interconnecting cable and the brown core of the 36 -core cable. The supply negative rai] is connected via $7 R L 1-2$ to the $O V$ rail of the equipment (internal chassis).

Both poles of the $D C$ supply are isolated from the case of the unit, apart from a $10 \mathrm{k} \Omega$ leakage path provided from the negative rail (7R12). The unit may therefore be connected to a positive earth, negative earth or floating secondary supply. Decoupling of the supply is performed by 7 C 8 7C13. 4.10.3 Switching Regulator (Fig. 7.16)

When the selected control unit is switched on, the nominal +24 V HT supply (derived from either $A C$ mains input or battery input) is applied to the switching regulator input. The supply, decoupled by L1, C6 is fed via FSi to TR5 collector and the primary of traneformer $T 1$. The output from TR5 emitter is a smoothed and stabilised line of approximately +10 V , which supplies the oscillator and switching circuits described below.

Sections a and b of integrated circuit IC1 form an oscillator runhing at about $37.5 \mathrm{kHz}_{z}$. The oscillator output is fed via TR4 to the variable pulse width switching circuit comprising TR3, IC1c, d. Capacitor C3 is charged via TR4 at the positive edge of each cycle. The discharge rate of C3 is controlled by TR3, which therefore determines the "on" period of the pulse width circuit.

The pulses from this circuit. are fed via TR1 to the $+24 V$ switching circuit TR6, TR7, TR8. Transistor TR8 switches the $+24 V$ supply to T1
primary on and off at a frequency of $37 \cdot 5 \mathrm{kHz}$, but with the on and off times determined by the variable pulse width switching circuit.

The rectified secondary voltage of $T 1$ produces the +10 V and +5 V stabilised supply lines. Smoothing is effected by L3, C11 and L4, C10 respectively, and overvoltage protection is provided by $D 8$ and D7.

A sample of the +5 V line is fed back to comparator stage TR2, where it is compared with the reference voltage across zener diode D3. Transistor TR2 then controls the pulse width switching circuit TR3, IC1c, d which in turn controls the on/off times of $T 1$ primary supply. This system ensures a high degree of output voltage stability over a wide range of input voltage variation.

Fig. 4.1

Fig.4.2 Frequency Generation Block Diagram

Channel Code Generating and Processing Block Diagram

Fig. 4.3

Fig.4.4 Logic Diagram for Simplex/Duplex Selector IC17

Fig.4.5 Logic Diagram for Duplexer Switching Circuit IC47, TR10

Modified Diagram for Channel Inhibit Circuit when Duplexer used

5.1	REP LACEMENT OF FUSES Table 5.1 Fuse Types and Ratings
5.2	REPLACEMENT OF LAMPS Table 5.2 Lamp Types and Ratings
5.3	ROUTINE MAINTENANCE
	5.2.1 Overall Checks
	5.3.2 Aerials and Feeders
5.4	OPERATION WITH DAMAGED AERIAL
5.5	COMPONENT LOCATIONS
5.6	SEMICONDUCTOR PRECAUTIONS
5.7	REPAIRS TO PRINTED CIRCUIT BOARDS
	5.7.1 Soldering
	5.7.2 Component Replacement
5.8	SPARES AND SERVICE REQUESTS

-. i RePIACEMEAT OF FUSES
llim sealand 66 system incorporates a total of 5 fuses all of which are contined within the transmitter/receiver unit MRT66. To gain access to the (oltage regulator fuse 5FS1 (shown in Fig. 7.15), remove the back cover from the unit as follows. Unscrew the two bolts holding the control face of the undt to the mounting frame. The unit is then pivoted round on the top and botiom frame bolts (these may have to be slackened half a turn).

The voltage regulator cover is then lifted off after the removal of four $6 B A$ screws. The recommended replacement fuse cartridge is shown in lable 5.1 below.

Fuses 7 FS 1, 2, 3 and 4 are located on the DC regulator board (Fig. 7.17). To gain access to these fuses, remove the front cover from the unit. The protective mains supply cover on the $D C$ regulator board must also be removed for access to the mains fuse 7FS1. The recommended replacement fuse cartridges are shown in Table 5.1.

Ct.ref.	Function	Replacement cartridge	Rating
$5 \not 5 \mathrm{~S} 1$	$\begin{aligned} & +5 \mathrm{~V} \text { and }+10 \mathrm{~V} \\ & \text { stabilised lines } \end{aligned}$	Belling Lee L1427	1 A
7FS 1	AC mains input	Standard Fuse Co. C254/1.6A	205 A for $230-240 \mathrm{~V}$ 5A for 110-120V
7FS2	DC supply input	Standard Fuse Co. C254/5A	$\begin{gathered} 5 \mathrm{~A} \\ \text { anti-surge } \end{gathered}$
7FS3	+24 V to MRT66 circuits \& Duplexer DXU66 (if used)	Standard Fuse Co. C 19F/5A	5A
7FS4	+24 V to control units MRC66 and or SRC66	Standard Fuse Co. C19/2A	2 A

Table 5.1 Fuse Types and Ratings

5.2 REP LACEMENT OF LAMPS

The Mains On lamp fitted to the transmitter/receiver unit MRT66 is accessible from the control face of the unit. The lamp may be replaced after unscrewing the lens; see Table 5.2 for details of the lamp type used.

On master and standard control units MRC66 and SRC66, the following indicator lamps are accessible from the front of the unit: Ch $16, \mathrm{Tx}$ On and (on MRC66 only) Ext-In-Use. These lamps may be replaced after unscrewing the lens; see Table 5.2 for details of the lamp types used.

To gain access to the lamps providing illumination for the control "windows" and keyboard, the control unit must be withdrawn from its housing. The units are retained by six studs through the back of the housing. A lamp may be replaced after pulling the lampholder away from the retaining bracket; see Table 5.2 for details of the lamp types used. Ensure that the lampholder is pushed fully home after lamp replacement.

Unit(s)	Indication(s)	Lamp type	Rating
MRT66	Mains On (6LP1)	Guest 280	$28 \mathrm{~V}, 24 \mathrm{~mA}$
MRC66 \& SRC66	Ch 16 (3LP9) Tx On (3LP7)	Guest TI525B	$5 \mathrm{~V}, 0.06 \mathrm{~A}$
MRC66	Ext-In-Use (3LP1)	Guest TI525B	$5 \mathrm{~V}, 0.06 \mathrm{~A}$
MRC66 $\&$ SRC66	"Windows"(3LP6, LP8) Keyboard (3LP10-LP13)	Vitality 673 E5/8 (LES)	6V, 0.36W

Table 5.2 Lamp Types and Ratings

5.3 ROUTINE MAINTENANCE

The maintenance procedures given below should be carried out at reqular intervals (e.g. every 6 months).
5.3.1 Overall Checks

Examine the various units and ancillaries for mechanical damage, salt deposits, corrosion etc. Pay particular attention to the main earthing connections at the transmitter/receiver unit, as any corrosion appearing at these points can considerably reduce the performance of the equipment.

Check the tightness of all inter-unit connections at the distribution boxes. Test the master and standard control unit switching functions (as applicable) and check the handset(s) for satisfactory operation.

Provided that suitable test instruments are available, the transmitter power output and receiver sensitivity may be checked - see section 6 . 1 for details. If poor performance is established, wich is not due to a faulty aerial or feeder, then reference should be made to the faultfinding procedures given in chapter 6. These procedures will enable the faulty circuit board or the faulty component within the suspect board to be identified.

Take care not to disturb the settings of any preset' controls during these checks. The equipment is fully aligned on final tegt at the factory, and all preset controls are adjusted for optimum performance. No attempt should be made to retune the circuits unless the proper test ingtruments are available.

7. 3.2 Aerials and Feeders

Examine the aerials and feeders, and check the feeder coaxial plugs with special regard to the outer (screen) connections. The following checks should be made on the feeder cables.
(a) Connect multirange testmeter (e.g. Avo model 8 or 9) switched to the $\Omega \times 100$ range, between the coaxial plug centre pin and body. The reading obtained should be greater than $100 k$? in dry conditions, assuming that the aerial is open circuit to DC (if the aerial is short circuit to DC then the feeder must be disconnected from the aerial for this test). A reading of less than $100 \mathrm{k} \Omega$ indicates that moisture has penetrated the cable; this will cause loss of RF power.
(b) Measure the resistance between the coaxial plug body and the ship's earth. A reading of less than $100 k \Omega$ indicates damage to the cable protective sheath. If this is not located and rectified immediately it will allow moisture to penetrate the cable, causing loss of RF power as in (a).
(c) Finally check that the coaxial plugs and sockets including any which may be in series with the aerial feeders, mate securely. If necessary, regrease the connector threads using a suitable silicone grease e.g. Midland Silicones type MS4 (Redifon stores index G88). Avoid greasing the coaxial plug centre pin or the outer sheath of the cable.

5.4 OPERATION WITH DAMAGED AERIAL

In a two-aerial installation, if the upper (single frequency) aerial or feeder should become damaged, the power amplifier level and mismatch detector circuit will operate, thereby reducing the transmitter power output. In these circumstances, the lower (double frequency) aerial may be connected to the single frequency aerial socket. This will enable all essential port and pilotage operations to be obtained using single frequency channels, but double frequency operation will not be possible since this requires both aerials.

5.5 COMPONENT LOCATIONS

Access to the printed circuit boards and components in the transmitter/ receiver unit MRT66 is obtained by rewoving the front and/or back covers from the unit. To remove the back cover, unscrew the two bolts holding the control face of the unit to the mounting frame. The unit is then pivoted round on the top and bottom frame bolts (these may have to be slackened half a turn).

Locations of the major components in the unit are shown in Figs.7.20 (a) and (b). Component locations within the various boards are also given in chapter 7 , together with individual circuit diagrams for each board and an overall circuit diagram for the unit.

Mastar arid standard control units MRC66 and SRC66 can be withdrawn from their housings for access to the printed circuit boards and compotients. The urits are retained by six studs through the back of thr housing. Component Jocation diagrams and circuit diagrams for these units are also given in chapter \bar{T}.

It component replacement is indicated, the faulty primted circuit board may be serviced by removing the mounting screws and carefully I ifting the board free from the wiring. It should not be necessary to remove the board completely from the unit, unless it is to be replaced by a new or serviced spare.

When carrying out repairs to printed circuit boards, it is essential that the procedures laid down in section 5.7 be adopted.

5.6 SEMICONDUCTOR PRECAUTIONS

Although semiconductor devices (e.g. diodes, transistors, integrated circuits) are extremely robust and have an exceptionally long life, they are easily damaged by misuse. The following precautions must be observed when working on the equipment:
(a) Low impedance devices, such as buzzers, must never be used for point-to-point wiring checks; the high transient voltages generated could easily damage transistors etc. in the circuit. An ohmmeter may be used provided that the current passed does not exceed 1 mA , and that polarity is observed.
(b) When soldering semiconductor devices, heat shunts must always be applied to the lead out wires, to minimise the amount of heat from the iron reaching the component. The shunt (a pair of snipe-nosed pliers would be suitable) must not be removed before the joint has cooled.
(c) Soldering irons must always have an effective earth connection to guard against possible damage from leakage current.

5.7 REPAIRS TO PRINTED CIRCUIT BOARDS

Special care is necessary when carrying out repairs to printed circuit boards. In particular, the following points should be noted. 5.7.1 Soldering
(a) The use of soldering irons with a rating greater than 25 W should be avoided. The most convenient soldering iron bit is a pencil type, not exceeding $5 \mathrm{~mm}(3 / 16 i n)$ diameter, with the end filed at an angle.
(b) Only approved resin-cored solder to BS441, and preferably of 20swg, must be used.
(c) The printed wiring board must not be overheated by prolonged application of the soldering iron; such action could destroy the bond between the copper foil and the board.
5.7.2 Component Keplacement
(a) W th wire-ended components, e.g. resistors, the component should be cut out close to the board. The joints should then be heated with a freshly tinned iron, and the wires pulled out from the bottom of the board using snipe-nosed pliers or stout tweezers.
(b) With multi-spill components, e.g. integrated circuits, the joints should be heated and the solder removed using either a suction de-soldering tool or a de-soldering wick. Alternatively, the solder may be brushed off using a fairly stiff brush (e.g. a paint brush with the bristles cut to a length of about $6 \mathrm{~mm}(1 / 4 \mathrm{in})$).
(c) When the faulty component has been removed, all solder must be cleared from the holes in the board. For this purpose a fine sewing needle may be used; the needle should first be oxidised in a flame to ensure that the molten solder does not adhere to it. Alternatively, a matchstick may be used, having first been sharpened to a point.
(d) Great care is necessary when fitting a new component. The leads must be bent to the exact centres of the holes, at the same time ensuring that the component is not damaged. If in doubt, the method of forming the wires may be copied from the faulty component. Note that with some types of resistor, it may be necessary to scrape some paint from the wires before they are formed.
(e) When inserting the leads into the holes in the circuit board, the copper foil should be supported by a finger nail close to the hole, to guard against pushing the copper away from the board.
(f) Before soldering the joints ensure that the component is pressed hard against the top of the board, and maintain this pressure until the solder has hardened. If a gap is left between the component and the board, subsequent pressure on the component will tend to push the copper away from the board.
(g) When soldering, the iron should be applied to one side of the component wire where it touches the copper track, and the solder to the other; as soon as the solder flows, the iron should be removed. When the joint has cooled the surplus wire should be cut off. See section 5.6 regarding the soldering of semiconductor devices.
(h) Before re-assembly, inspect the circuit board for drops of solder splashed over its surface.
(j) If a portion of the printed wiring is damaged, it may be cut out with a very sharp knife and replaced by a piece of insulated copper wire. This should be soldered between two points where components are soldered to the track, rather than to the foil itself.

5.8 SPARES AND SERVICE REQUESTS

When ordering spares and replacement parts for any unit in the Sealand 66 system, the information listed below must be given, to ensure prompt dispatch of the correct item(s):
(a) Type no. and serial no. of the unit as shown on the label on the back or base of the unit.
(b) Modification state of the unit as shown on the Mod. Record label
(same location).
(c) Name and type no. of the PCB where applicable.
(d) Component reference as shown on the circuit diagram, together with the Redifon drawing no. of the circuit diagram.
(e) Full description of the component as shown in the Component list.

Requests for spares should be forwarded to the Marine Spares Dept. of Redifon Telecommunications Ltd. They must be accompanied by an official order giving address(es) for dispatch and billing.

Advance Spares Lists for the Sealand 66 system are available from the Marine Division of Redifon Telecommunications Ltd. A range of these are available to suit different purposes, as follows:
SLAll122 Edn. A Basic spares to comply with Merchant Shipping (Radio) Rules 1965, up to

SLA11122 Edn. C Comprehensive spares.

Requests for service should be forwarded to the Marine Service Manager
of Redifon Telecommunications Ltd., giving the following information:
(a) Vessel's next port (s) of call.
(b) Estimated time of arrival.
(c) Duration of stay.
(d) Name and address of ship's agent.

7 ILUSTRATIONS AND COMPONENT LISTS

7.1 IRANSMIITER/RECEIVER UNIT MRT66

RECEIVER
tig.7.1 Receiver Board Layout (001/11103B/O)
7.1.1 Receiver Board Component List

Fig.7.2 Receiver Filter Layout ($001 / 11104 \mathrm{~A} / 2$)
7.1.2 Receiver Filter Component List

Fig.7.3 Receiver Circuit (002/11103B/L)
LINEAR SYNTHESISER
Fig.7.4 Linear Synthesiser Board Layout (001/11109B/1) 7.1.3 Linear Synthesiser Board Component List

Fig.7.5 Linear Synthesiser Circuit (002/11109B)
LOGIC CONTHOL
Fig.7.6 Logic Control Board Layout (001/11205A/o) 7.1.4 Logic Control Board Component List

Fig.7.7 Variable Divider Board Layout ($010 / 11108 \mathrm{~A} / 2$) 7.1.5 Variable Divider Board Component List

Fig.7.8 Private Channel Selector Board Layout (001/11206A/2) 7.1.6 Private Channel Selector Board Component List

Fig.7.9 Logic Control Circuits (002/11205A)
TRANSMITTER
Fig.7.10 Tx Driver Board Layout (001/11105A/1) 7.1.7 Tx Driver Board Component List

Fig.7.11 Tx Driver Circuit (002/11106B Sht.1)
Fig.7.12 Power Amplifier Assembly Layout (001/11106B/1 + 010/11106B/1) 7.1.8 Power Amplifier Component List

Fig.7.13 Aerial Filter Layout ($001 / 11113 \mathrm{~A} / 2$) 7.1.9 Aerial Filter Component List

Fig.7.14 Power Amplifier Circuit ($002 / 11106 \mathrm{~B}$ Sht.2)

SWITCFIING REGULATOR

Fig.7.15 Switching Regulator Board Layout (001/11107A/1)
7.1.10 Switching Regulator Board Component List

Fig.7.16 Switching Regulator Circuit (002/11107A/L)

DC REGULATOR/RELAY BOARD
Fig.7.17 DC Regulator Board Layout ($001 / 11203 \mathrm{~A} / 1$)
7.1.11 DC Regulator Board Component List

Fig.7.18 Relay Board Layout ($001 / 11204 \mathrm{~A} / 1$)
7.1. 12 Relay Board Component List

DC Regulator/Relay Board circuits are included on the Interconnection Diagram, Fig. 7.21.
CHASSIS
Fig.7.20 Location of Major Components MRT66 001/11123A/0
(a) Front View
(b) Back View
7.1.13 Chassis Mounted Component List

Fig.7.21 Interconnection Diagram MRT66 (002/11123A/L)
7.2 STANDARD CONTROL UNIT SRC66

Fig.7.22 Remote Logic Board Layout (001/11126A/O) 7.2.1 Remote Logic Board Component List

Fig.7.23 Remote Logic Circuits (002/11126A)
Fig.7.24 SRC Linear Board Layout (001/11127B/1) 7.2.2 SRC Linear Board Component List

Fig.7.25 SRC Linear Circuits (002/11127B)
Fig.7.26 Location of Major Components SRC66 (010/11125A/0) 7.2.3 SRC Panel Mounted Component List

Fig.7.27 Interconnection Diagram SRC66 (002/11125A)

```
7.) MASTER (ONTROL GNIT MRCG,
    Fig.7.28 MRC Linear Board Layout (001/11127A/0)
    7.3.1 MRC Linear Board Component List
    Fig.7.29 MAC Linear Circuits (002/11127A)
    Fig.7.30 Location of Major Components MRC66 (010/1.1124A/O)
    7.3.2 MRC Pane] Mounted Component List
    Fig.7.31 Interconnection Diagram MRC66 (002/11124A)
7.4 ANCHLIARY UNITS
    Fig.7.32 Cabin Extension ECU6O (002/10'462B/S)
    Fig.7.33 Cabin Extension ECU61 (002/10465B/L)
    Fig.7.34 Bridge Wing Extension ECU62 (002/10467B/S)
    Fig.7.35 Bridge Wing Extension ECU63
    Fig.7.36 Exchange Link Unit EW66
    Fig.7.37 Loudhailer Amplifier 11201A
    Fig.7.38 Duplexer Unit DXU66 (001/11120A/O + 013/11120A/3 .OO2/11120A)
```

7. 1 TRANSMITTER/RECEIVER UNIT MRT66
7.1.1 Receiver Board Component List

RESISTORS
A11 resistors are $\pm 5 \%$ 0. 33W Mullard CR25 unless otherwise stated

1R1	$100 \mathrm{k} \Omega$
1R2	$27 \mathrm{k} \Omega$
1R3	$27 \mathrm{k} \Omega$
1R4	150Ω
1R5	27Ω

1R6 part 1 L8
$1 R 7 \quad 1 \mathrm{k} \Omega$
$1 \mathrm{R8} \quad 6.8 \mathrm{k} \Omega$
$1 \mathrm{R9} \quad 27 \mathrm{k} \Omega$
1R10 100s
1R11 4709
1R12 100s
1R13 1k Ω
1R14 Not used
1R15 2. 2ks
1R16 27k8
1R17 $6.8 \mathrm{k} \Omega$
$1 \mathrm{R1}_{18} \quad 1.5 \mathrm{k} \Omega$
1R19 1. $5 \mathrm{k} \Omega$
1R20 4. $7 \mathrm{k} \Omega$ LIN 0.2W Potentiometer Morganite 62 H
1R21 4. $7 \mathrm{k} \Omega$ LIN 0.2W Potentiometer' Morganite 62 H
1R22 47k』
1R23 47ks
1R24 $220 \mathrm{k} \Omega$
1R25 470ks
1R26 6.8k
1R27 470ks
1R28 270ks
1R29 3 . 3 ks
1R30 47ks
1R31 100k8
1R32 15ks
1R33 270ks
1R34 1508
1R35 120ks
1R36 Not used
1R37 15ks
1R38 27k8
1R39 Not used
1R40 1508
1R41 100ks
$1842 \quad 27 \mathrm{k} \Omega$
1R43 27k8
1R44 1508
1R45 27R

1R46	part IL23
1247	$1 \mathrm{k} / 8$
1R48	$12 \mathrm{k} / 8$
1849	27k8
1R50	1008
1R51	4708
1R52	3308
1853	3308
1R54	3308
1855	1009
1R56	3308
1R57	6. 8 k 8
1R58	27k8
1R59	330 k 8
1R60	10k8
1R61	270k8
1R62	10k\%
1R63	560k8
1R64	270k8
1R65	470k8
1R66	15k8
1R67	$4 \cdot 7 \mathrm{k} 8$
1R68	47k ${ }^{\text {d }}$
1R69	470k8
1 R 70	470k8
1R71	3. 3k8
1872	3. 3 k 8
$1 \mathrm{R73}$	4.7k8
1R74	3308
1R75	10k8
1R76	1k8
1277	1k. 8
1 R 78	1 k 8
1R79	10ks
1R80	2. 2 k 8
1R81	68 k \%
1R82	10k\%
1R83	1008
1R84	478
1R85	478
1R86	1. $8 \mathrm{k} \boldsymbol{8}$
$1 \mathrm{R} 87\}$	Not used
$\begin{aligned} & \text { to } \\ & \text { 1R99 } \end{aligned}$	
$1 \mathrm{R100}$	150Ω

18101	10kS LIN 0.2 W Potentiometer Morganite 62H
1R102	47k8
1R103	100 k 8
1 R 104	15k8
1R105	3.3k8
1R106	3.3k8
1R107	1008
1R108	478
1R109	3.38 \pm 10\% 5W Painton MV1A
1R110	10k8
$1^{\text {R111 }}$	100 k 8
1R112	1 k \%
1R113	108
1R114	6808
$1 \mathrm{R115}$	2. 2 k 8
1 R 116	100 k 8
$1 \mathrm{R117}$	47k8
1R118	47k8
1R119	4.7k8
CAPACITORS	
Commonly used capacitors are identified as follows: (i) $1000 \mathrm{pF} \pm 10 \% 100 \mathrm{~V}$ Mullard 630-02102 (ii) 0.01哣 40 V Mullard 629-02103 (iii) $0 \cdot 01 \mu \mathrm{~F} \pm 10 \%$ 100V Erie $8121 \mathrm{M}-100-103 \mathrm{~K}-W 5 R$ (iv) $0 \cdot 1 \mu \mathrm{~F} \pm 5 \% 250 \mathrm{~V}$ Siemens B32541-A3104J	
101	
$1 \mathrm{C8}$ (
1 C 9	1000 pF (i)
$1 C_{10}$	1000 pF (i)
${ }_{1 C 11}$	1000 pF (i)
$1 C_{12}$	2-9pF 300V Trimmer Mullard 809-09002
1 C 13	$3 \cdot 9 \mathrm{pF} \pm 0 \cdot 25 \mathrm{pF} 63 \mathrm{~V}$ Mullard 632-09398
1 C 14	2-9pF 300V Trimmer Mullard 809-09002
$1 \mathrm{C}_{15}$	1000 pF (i).
1 C 16	part 118
1 C 17	1000 pF (i)
${ }_{1 C 18}$	1000 pF (i $)$
$1 \mathrm{C}_{19}$	1000 pF (i)
1 C 20	O. $1 \mu \mathrm{~F}$ (iv)
$1{ }^{1} 21$	0.014F(ii)
${ }_{1} \mathrm{C}_{22}$	part 1.9
1 C 23	$0.01 \mu \mathrm{~F}$ (iii)
$1{ }^{\text {C2 }} 4$	$0 \cdot 01 \mu \mathrm{~F}$ (iii)
1 C 25	Not used
1 C 26	14F 35V ITT TAG1.OM35
1 C 27	$0 \cdot 01 \mu \mathrm{~F}(\mathrm{ii})$
1 C 28	$0 \cdot 01 \mu \mathrm{~F}(\mathrm{ii})$
1 C 29	0.014F(iii)
1 C 30	$0 \cdot 01 \mu \mathrm{~F}$ (ii)

```
1C31 part ILII
1C12 part ILI2
1C33 O.01\muF(iii)
1C34 2. 2pF \pm 0. 25pF 63V Mullard 632-09228
1C'55 1000pF(i)
1C36 O. OMF(iv)
1C37 0.01\muF(ii)
1C38 0.01\muF(ii)
1C39 O.1\muF(iv)
1C40 0.047\muF \pm5% 250V Siemens B32541-A3473J
1C41 1800pF }\pm2%63V Salford PF/N
1C42 120pF \pm2% 63V Mullard 632-34121
```



```
1C44 0.047\muF \pm5% 250V Siemens B32541-A3473J
1C45 4700pF }\pm2% 63V Salford PF/N
1C46 100\muF 25V Mullard 016-16101
1C47 0.47\muF \pm5% 100V Siemens B32541-A1474J
1C48 0.47\muF \pm5% 100V Siemens B32541-A1474J
1C49 0.01\muF(ii)
1C50 O. 1\muF(iv)
1C51 100\muF 25V Mullard 016-16101
1C52 Not used
1C53 O. 1\muF(iv)
1C54 10\muF 63V Mullard 016-18109
1C55 1000pF(i)
1C56 100\muF 40V Mullard 016-17101
1C57 47\muF 40V Mullard 016-17479
1C58 2-18pF 300V Trimmer Mullard 809-09003
1C59 1000pF(i)
1C60 1000pF(i)
1C61 2-18pF 300V Trimmer Mullard 809-09003
1C62 1000pF(i)
1C63 to} see section 7.1.2
1C69 }
1C70 1000pF(i)
```

```
1C71 1000pF(i)
1C72 2-9pF 300V Trimmer Mullard 809-09002
1C73 1000pF(i)
1C74 3.9pF \pm0.25pF 63V Mullard 632-09398
1C75 2-9pF 300V Trimmer Mullard 809-09002
1C76 1000pF(i)
1C77 Not used
1C78 part 1L23
1C79 1000pF(i)
1CBO O. 1\muF(iv)
1C81 1000pF(i)
1C82 O.1\muF(iv)
1C83 0.01\muF(ii)
1C84 part 1L.24
1C85 0.01\muF(iii)
```

```
C86 O. 1\muF(iv)
1C87 0.01\muF(iii)
1C88 0.014F(iii)
1C89 1HF 35V ITT TAG1. OM35
1C90 O.01uF(ii)
1C91 0.01\muF(ii)
1C92 0.01\muF(iii)
1C93 part 1L25
1C94 1000pF(i)
1C95 O.1\muF(iv
1C96 0.01\muF(ii)
1C97 6.8pF 士 0. 25pF 63V Mullard 632-09688
1C98 0.01\muF(ii)
C99 0.1\muF(iv)
1C100 1000pF(i)
1C101 1000pF(i)
1C102 150pF \pm2% 63V Mullard 632-34151
1C103 1000pF(i)
1C104 1000pF(i)
1C105 150pF \pm 2% 63V Mullard 632-34151
1C106 0.01\muF(ii)
1C107 0.01\muF(iii)
1C108 1\muF 35V ITT TAG1. OM35
1C109 Not used
1C110 Not used
1C111 O. 1\muF(iv)
1C112 1000pF(i)
1C113 O.1\muF(iv)
1C114 O. 1\muF(iv)
1C115 Not used
l}\begin{array}{l}{1C116}\\{\mathrm{ to }}\\{1C129}\end{array}}\quadNot use
1C130 22\muF 25V Mullard 015-16229
1C131 1000pF(i)
```

```
1C132 O.1\muF(iv)
```

1C132 O.1\muF(iv)
1C133 22\muF 25V Mullard 015-16229
1C133 22\muF 25V Mullard 015-16229
1C134 0.1 (1)F(iv)
1C134 0.1 (1)F(iv)
1C135 0.01\muF(ii)
1C135 0.01\muF(ii)
1C136 1000pF(i)
1C136 1000pF(i)
1C137 1000pF(i)
1C137 1000pF(i)
1C138 0.01\muF(ii)
1C138 0.01\muF(ii)
1C139 1000pF(i)
1C139 1000pF(i)
1C140 0.01\muF(ii)
1C140 0.01\muF(ii)
1C141 120pF\pm2% 63V Mullard 632-34121

```
1C141 120pF\pm2% 63V Mullard 632-34121
```

```
1C142 0.01\muF(ii)
1C143 22uF 25V Mullard 015-16229
1C144 224F 25V Mullard 015-16229
1C145 2. 24F 63V Mullard O15-18228
```

DIODES

$\left.\begin{array}{l} 1 D_{1} \text { to } \\ 1 D_{13} \end{array}\right\}$	All 1N4148 ITT
${ }_{1} \mathrm{D}_{14}$ to)	
1D19 \}	Not used
1 D 20	1 N

TRANS ISTORS

1TR1	bFS28 Mullard
1 TR2	To specification P29644/S Redifon
1TR3	BF115 Mullard
1 TR4	E300 Siliconix
1TR5	BFS28 Mullard
1 TR6	BFS28 Mullard
1 TR7	To specification P29644/S Redifon
1TR8	BFi15 Mullard
1 TR9	BC558 Mullard
1 TR 10	BC548 Mullard
$1 \mathrm{TR}_{11}$	BC548 Mullard
1 TR12	BFX29 Mullard
1 TR13	BC558 Mullard
1 TR14	BC558 Mullard
1 TR15	BC548 Mullard
1 TR 16 to $\}$ Not used	
1 TR20	E300 Siliconix
1 TR21	E300 Siliconix
Integrated circuits	
$1 \mathrm{IC}_{1}$	CA3028A RCA
1 IC 2	CA3075 RCA
1 IC 3	LM3900N National Semiconductors
1 IC 4	SN76003N Texas
1 IC5	CA3012 RCA
1 IC6	CA 3075 RCA
1 IC 7 to	Not used
1 IC9	Not used
1 IC 10	MFC6040 Motorola
$1 \mathrm{IC}_{11}$	MC1306P Motorola

	see section 7.1.2
1 L 5	1. 5 $\mu \mathrm{H}$ Painton 58/10/0006/10
$1 \mathrm{L6}$	P29659/3 Redifon
1 L 7	P29659/3 Redifon
1 L8	P29673/3 Redifon
1 L9	P29668/3 Redifon
$1 \mathrm{L10}$	Not used
1 L 11	P29669/3 Redifon
1 L 12	P29667/3 Rediton

1 L 13	33uH Painton 58/10/0014/10
1.1年	P29685/3 Redifon
1L15	P29657/3 Redifon
$\left.\begin{array}{l} \text { 1L16 to } \\ \text { 1L19 } \end{array}\right\} \text { see section } 7.1 .2$	
1 L 20	1. $5 \mu \mathrm{H}$ Painton 58/10/0006/10
$1 \mathrm{L21}$	P29659/3 Redifon
1122	P29659/3 Redifon
1123	P29672/3 Redifon
1124	P29666/3 Redifon
1125	P29665/3 Redifon
1126	33 H P Painton 58/10/0014/10
FI LTERS	
1FL1	P29629/3 Redifon
1FL2	P29643,3 Redifon
1FL3	FM4 (Black) Vernitron
1 FL 4	FM4 (Black) Vernitron

7.1.2 Receiver Filter Component List

CAPACITORS

All capacitors marked* are $0 \cdot 5-7 \mathrm{pF} 2000 \mathrm{~V}$ Trimmer Oxley TUT/7/ST-R
1C1 1000pF 500V Leadthrough Erie 361/K2600
1C2 Not used
1C3 1000pF 500V Erie 801/K120051 Type 2
$1 \mathrm{C} 4 \quad 0.5-7 \mathrm{pF}$ *
$1 \mathrm{C} 5 \quad 0 \cdot 5-7 \mathrm{pF}$

1C6 18pF $\pm 10 \%$ 100V Erie 390/X5P
$1 \mathrm{C} 7 \quad 0 \cdot 5-7 \mathrm{pF}^{*}$
$1 \mathrm{C8} \quad 0 \cdot 5-7 \mathrm{pF}$ *

1 C63 1000pF 500V Leadthrough Erie 361/K2600
1 C64 1000pF 500V Erie 801/K120051 Type 2
$1 \mathrm{C} 65 \quad 0 \cdot 5-7 \mathrm{pF}$ *
1 C66 $\quad 0 \cdot 5-7 \mathrm{pF}^{*}$
1 C67 18pF $\pm 10 \% 100 \mathrm{~V}$ Erie 390/X5P
$1 \mathrm{C} 68 \quad 0 \cdot 5-7 \mathrm{pF}^{*}$
$1 \mathrm{C} 69 \quad 0 \cdot 5-7 \mathrm{pF}^{*}$

INDUCTORS

$1 \mathrm{~L}_{1}$	$\mathrm{P} 29626 / \mathrm{S}$ Redifon
1 L 2	$\mathrm{P} 29626 / \mathrm{S}$ Redifon
1 L 3	$\mathrm{P} 29626 / \mathrm{S}$ Redifon
1 L 4	$\mathrm{P} 29626 / \mathrm{S}$ Redifon
1 L 16	$\mathrm{P} 29625 / \mathrm{S}$ Redifon
1 L 17	$\mathrm{P} 29625 / \mathrm{S}$ Redifon
1L18	$\mathrm{P} 29625 / \mathrm{S}$ Redifon
1 L 19	$\mathrm{P} 29625 / \mathrm{S}$ Redifon

7.1.3 Linear Synthesiser Board Component List

RESISTORS

2R66	10k8
2R67	2208
2R68	1 k \%
2R69	$5 \cdot 6 \mathrm{k}$ ת
2R70	$2 \cdot 7 \mathrm{k}$ ת
2R7 1	2208
2R72	1 k 8
2 R 73	1 k \%
2R74	1008
2R75	5.6 k 8
2 R 76	1. 5 k 8
2 R 77	
2 R 78	Not used
2 R 79	
2 R 80	4. 7 k \%
2 R 81	680,
2 R 82	22ks

CAPACITORS

Commonly used capacitors are identified as follows:
(i) $1000 \mathrm{pF} \pm 10 \%$ 100V Mullard 630-02102
(ii) $0.01 \mu \mathrm{~F} 40 \mathrm{~V}$ Mullard 629-02103
(iii) $0 \cdot 01 \mu \mathrm{~F} \pm 5 \% 250 \mathrm{~V}$ Siemens B32541-A3103J
(iv) $0 \cdot 1 \mu \mathrm{~F} \pm 5 \% 250 \mathrm{~V}$ Siemens B32541-A3104J
(v) $22 \mu \mathrm{~F}$ 16V ITT TAG22M16
(vi) 2-18pF 300V Trimmer Mullard 809-09003
$2 \mathrm{C}_{22} \quad 10 \mu \mathrm{~F}$ 16V ITT TAG10M16
$2 \mathrm{C} 23 \quad 2 \cdot 2 \mu \mathrm{~F}$ 35V ITT TAG2. 2 M 35
$2 \mathrm{C} 24 \quad 100 \mu \mathrm{~F}$ 25V Mullard 016-16101
$2 \mathrm{C} 25 \quad 0.01 \mu \mathrm{~F}$ (ii)
$2 \mathrm{C} 26 \quad 0.01 \mu \mathrm{~F}$ (iii)
$2 \mathrm{C} 27 \quad 0.015 \mu \mathrm{~F} \pm 5 \%$ 250V Siemens B32541-A3153J
$2 \mathrm{C} 28 \quad 0 \cdot 1 \mu \mathrm{~F}$ (iv)
$2 \mathrm{C} 29 \quad 0.01 \mu \mathrm{~F}$ (iii)
$2 \mathrm{C} 30 \quad 68 \mathrm{pF} \pm 2 \% 63 \mathrm{~V}$ Mullard 632-34689
2C31 $\quad 150 \mathrm{pF} \pm 2 \% 63 \mathrm{~V}$ Mullard $632-34151$
$2 C 32 \quad 0 \cdot 1 \mu \mathrm{~F}$ (iv)
$2 C 33 \quad 0.01 \mu \mathrm{~F}$ (iii)
2C34 1000pF (i)
$2 \mathrm{C} 35 \quad 22 \mu \mathrm{~F}$ (v)
$2 C 36 \quad 22 \mu \mathrm{~F}$ (v)
2C37 $330 \mathrm{pF} \pm 2 \%$ 63V Mullard 632-58331
$2 \mathrm{C} 38 \quad 0 \cdot 1 \mu \mathrm{~F}$ (iv)
$2 C 39 \quad 22 \mu \mathrm{~F}$ (v)
$2 \mathrm{C} 40 \quad 22 \mu \mathrm{~F}$ (v)
$2 \mathrm{C41} \quad 0.47 \mu \mathrm{~F} \pm 5 \%$ 100V Siemens B32541-A 1474 J
$2 \mathrm{C42} \quad 0.047 \mu \mathrm{~F} \pm 5 \% \mathrm{250V}$ Siemens B32541-A3473J
$2 \mathrm{C} 43 \quad 1000 \mathrm{pF}$ (i)
$2 C 44 \quad 1000 \mathrm{pF}$ 500V Erie $801 / \mathrm{K}_{120051}$ Type 2
$2 \mathrm{C} 45 \quad \mathrm{O} \cdot 01 \mu \mathrm{~F} \pm 10 \%$ 100V Erie 8121M-100-103K-W5R
$2 \mathrm{C} 46 \quad 2-1 \mathrm{ppF}$ (vi)

```
2C47 100pF 士 2% 63V Mullard 632-34101
2C48 12pF \pm 2% 63V Mullard 632-10129
2C49 5-60pF 300V Trimmer Mullard 809-08003
2C50 1000pF 500V Erie 801/K120051 Type 2
2C51 2-18pF (vi)
2C52 1000pF (i)
2C53 0.01\muF\pm 10% 100V Erie 8121M-100-103K-W5R
2C54 1000pF (i)
2C55 10pF }\pm2% 63V Mullard 632-10109
2C56 2-18pF (vi)
2C57 1000pF (i)
2C58 2-18pF (vi)
2C59 1000pF (i)
2C60 1000pF (i)
2C61 22pF + 2% 63V Mullard 632-34229
2C62 0.01\muF (ii)
2C63 1000pF (i)
2C64 15pF 士 2% 63V Mullard 632-10159
2C65 22pF }\pm2% 63V Mullard 632-34229,
2C66 1000pF (i)
2C67 1000pF (i)
2C68 O.01\muF (ii)
2C69
2C71
2C72 0.01\muF (ii)
2C73 22uF (v)
2C74 2.7pF = 2% 63V Mullard 632-09278
2C75 0.01\muF (ii)
2C76 0.01\muF (ii)
DIODES
2D5 1N4148 ITT
2D6 1N4148 ITT
TRANS ISTORS
\begin{tabular}{ll} 
2TR5 & BC548 Mullard \\
2TR6 & BC548 Mullard \\
2TR7 & BC558 Mullard \\
2TR8 & BC548 Mullard \\
2TR9 & BC548 Mullard \\
& \\
2TR10 & BC558 Mullard \\
2TR11 & BC548 Mullard \\
2TR12 & WN743 Siliconix \\
2TR13 & BF115 Telefunken \\
2TR14 & E300 Siliconix \\
& \\
2TR15 & BFS28 Mullard \\
2TR16 & BF115 Telefunken
\end{tabular}
INTEGRATED CIRCUIT
2IC1 MC1306P Motorola
```


inductors

2 L 10	560 H C Cambion 3635-34
$2 L_{11}$	P29663/3 Redifon
2L12	P29687/3 Redifon
2L13	P29662/3 Redifon
2L14	P29657/3 Redifon
2 L 15	P29657/3 Redifon
2 L16	15 $\mu \mathrm{H}$ Painton 58/10/0012/10
2L17	2. $2 \mu \mathrm{H}$ Painton 58/10/0007/10
2L18	33uH Painton 58/10/0014/10
2L19	2. $2 \mu \mathrm{H}$ Painton 58/10/0007/10
2L20	Not used
2L21	$1 \mu \mathrm{H}$ Painton 58/10/0005/10

TRANSFORMER

2T1 SM111 Gardners
CRYSTAL
$2 \times \mathrm{L} 1 \quad 33 \cdot 1875 \mathrm{MHz}$ to Redifon specification P29602
VCO ASSEMBLY

The VCO is a fully encapsulated, factory sealed assembly which is not subject to the usual maintenance/repair procedures. Individual components are therefore not listed for this unit. For these purposes, the VCO is to be regarded as a single component to Redifon drg. $010 / 11109 \mathrm{~A} / 3$.

7.1.4 Logic Control Board Component List

RES ISTORS

All resistors are $\pm 5 \%$ 0. 33 W Mullard CR25
$\left.\begin{array}{l}3 R 1 \\ 3 R 2\end{array}\right\}$ see section 7.1 .5
3R3 47k 3
$3 R 4$ to $\}$
see section 7.1 .5

3R14	470 k /
3R15	470ks
3R16	470ks
3R17	470ks
3R18	470k8
3 R 19	470 kS
3R20	470ks
3R21	Not used
3R22	470ks
3 R 23	470ks
3R24	470ks
3R25	680ks
3R26	1 M 2
3R27	220ks
3R28	220k8
3 R 29	47k8
3R30	27k Ω
3R31	27kS
3R32	27k Ω
3R33	27k 2
3R34	27kת
3R35	27k ,
3R36	27k8
3R37	27k Ω
3R38	27k 8
$\left.\begin{array}{l} 3 \mathrm{R} 39 \\ 3 \mathrm{R} 41 \end{array}\right\}$	Not used
$\left.\begin{array}{l} 3 \mathrm{R} 42 \text { to } \\ 3 \mathrm{R} 44 \end{array}\right\}$	see section 7.1.5
3R45	47 k 8
3R46	1k8
3R47	
$\left.\begin{array}{l} \text { to } \\ 3 R 55 \end{array}\right\}$	Not used
3R56	47ks
3 P 57 7	Not used
3R59	1 k S
3R60	22k8
3R61	33kS

```
3R62 10k?
3R63 68k\Omega
3R64 1. 5k\Omega
3R65 33k&
3R6t) 150k\Omega
3R67 220k\Omega
3R68 150k\Omega
3R69 150k\Omega
3R70 330k\Omega
3R71 330k8
3R72 47k\Omega
3R73 4.7k\Omega
3R74 4.7k\Omega
3R75 47k\Omega
3R76 47k\Omega
3R77 47k\Omega
3R78 47k\Omega
3R79 47ks
3R80 47k\Omega
3R81 47kS
3R82 Not used
3R83 47kS
3R84 47k\Omega
3R85 47k\Omega
3R86 470k\Omega
3R87 Not used
3R88 100&
3R89 47k\Omega
CAPACITORS
All capacitors marked * are 0.1\muF }\pm5% 250V Siemens B32541-A3104J J
\3C1 to 
3C6 O. 1\muF*
3C7 O.1\muF*
3C8 0. 1\muF*
3C9 Not used
3C10 0. 1\muF*
3C11 O. 1\muF*
3C12 O. 1\muF*
3C13 10\muF 16V ITT TAG10M16
3C14 0.1\muF*
3C15 2.2\muF 35V ITT TAG2. 2M35
3C16 see section 7.1.5
3C18 150pF }\pm2% 63V Mullard 632-34151
3C19 150pF }\pm2% 63V Mullard 632-34151
3C20 to {}}\mathrm{ {ee section 7.1.5
3C39 to} Not used
```

```
3C40 0. 1\muF*
3C41 0.1\muF*
3C42 0.1\muF.
3C43 0.1 \muF*
3C44 0.1\muF*
3C45 2. 2\muF 35V ITT TAG2. 2M35
```



```
3C4i 22\muF 25V Mullard 015-16229
3C48 0.01\muF 40V Mullard 629-02103
3C49 0.47\muF \pm5% 100V Siemens B32541-A1474J
3C50 1\muF 35V ITT TAG1.OM35
```

DIODES

3D1 to
$\left.\begin{array}{l}\text { 3D3 } \\ \text { 3D4 to }\end{array}\right\}$ see section 7.1 .5
3D15 1N4148 ITT

TRANSISTORS

$3 \mathrm{TR}_{1}$	see section 7.1 .5
3 TR3	
3 TR4	Not used
3 TR5	BC558 Mullard
3 TR6	BC558 Mullard
3 TR7	BC548 Mullard
3 TR8	Not used
3 TR9	BC548 Mullard
3 TR 10	BC548 Mullard
3 TR11	BC548 Mullard
3 TR12	BC548 Mullard
3 TR13	BC558 Mullard

INTEGRATED CIRCUITS

3IC1 t 3 IC9	see section 7.1.5
3 IC 10	MC14011CP Motorola
3 IC 11	MC14001CP Motorola
3IC12	MC14001CP Motorola
3 IC 13	MC14001CP Motorola
3 IC 14	MC14506CP Motorola
3IC15	MC14519CP Motorola
3 IC 16	MC14519CP Motorola
31 C 17	MCt4011CP Motorola
3 IC 18	MC14028CP Motorola
$\left.\begin{array}{c} \text { 3 IC } 19 \\ \text { to } \end{array}\right\}$	Not used
3 IC 28)	
3 IC 29	MC14002CP Motorola

3 IC 30 MC14011CP Motorola
3 IC31 MC14001CP Motorola
3 IC32 MC14001CP Motorola
3IC33 CD4050AE RCA
3IC 34 CD4050AE RCA
3IC35
to
31043
3 IC44 CD4024AE RCA
3 IC45 CA3083 RCA
3 IC46 CA3083 RCA
3 IC47 MC14001CP Motorola
$3 I C 48$ MC 14011CP Motorola 3 IC49 MC54011CP Motorola
3 IC50 MC14011CP Motorola
3 IC51 MC14506CP Motorola
3 IC52 MC\&4012CP Motorola
3 IC53 MC14001CP Motorola 3 IC54 MC14506CP Motorola 3 IC55 MC14012CP Motorola

PWG
3PL1 8623/19/74/14/335 (way) Souriau

7.1.5 Variable Divider Board Component List

RES ISTORS

```
All resistors are }\pm5% 0.33W Mullard CR25
3R1 150%
3R2 1k\Omega
3R3 see section 7.1.4
3R4 120k\Omega
3R5 120k\Omega
3R6 1k&
3R7 1k&
3R8 47k\Omega
3R9 470kS
3R10 2.2k\Omega
3R11 2. 2k\Omega
3R12 2.2k\Omega
3R13 1.5kS
l}\begin{array}{l}{3R14 tn}\\{3R38}\end{array}}\mathrm{ see section 7.1.4
l}\begin{array}{l}{3R39 to}}\\{3R41}\end{array}}Not use
3R42 1.5kS
3R43 330\Omega
3R44 220\Omega
```

CAPACITORS

All capacitors marked * are 1000 pF 500 V Leadthrough Midland Capacitors FT73/15

3C1 150pF $\pm 2 \%$ 63V Mullard 632-34151
3C2 $\quad 1000 \mathrm{pF} \pm 10 \% 100 \mathrm{~V}$ Mullard 630-02102
3C3 22 3 F 25V Mullard 015-16229
$3 \mathrm{C} 4 \quad 0.01 \mu \mathrm{~F}$ 40V Mullard 629-02103
3C5 1 $1 \mu \mathrm{~F}$ 35V ITT TAG1.OM35
$3 C 6$
$\left.\begin{array}{l}\text { to } \\ 3 C_{15}\end{array}\right\}$
see section 7.1 .4
3C16 22 16 F 16V ITT TAG22M16
3C17 0.01 17 F 40V Mullard 629-02103

$3 C_{18}$ \}	see section 7.1 .4
$\left.34_{19}\right\}$	
3 C 20	1000 pF
3 C 21	1000 pF *
3 C 22	1000 pF *
3 C 23	$1000 \mathrm{pF}{ }^{*}$
3 C 24	1000 pF *
3 C 25	1000 pF *
3 C 26	1000pF*
3 C 27	1000 pF *
3 C 28	1000 pFF
3 C 29	1000 pF *
3 C 30	1000pF*

niones

$3{ }^{1} 1$	1N4 148 ITT
3D2	$1{ }^{1} 4148$ ITT
3D3	$1 \mathrm{~N}_{4} 148 \mathrm{ITT}$
transistors	
3 TR1	BC558 Mullard
3 TR2	BC548 Mullard
3 TR3	ee section 7.1.6
3TR7	-e section 7.1.6
3TR8	BSX20 Mullard
INTEGRATED CIRCUITS	
3 IC 1	SN7400N Texas
3 IC 2	SN74 $\mathrm{H}_{1} 10 \mathrm{~N}$ Texas
3 IC 3	SN7400N Texas
$3 \mathrm{IC} / 4$	SN74H73N Texas
$3 \mathrm{IC5}$	SN7400N Texas
31C6	SN74192N Texas
3 IC 7	SN74192N Texas
$3 \mathrm{IC8}$	SN74192N Texas
$3 \mathrm{IC9}$	MC4044P Motorola

INDUCTOR
312 2.2ull Painton 58/10/0007/10
7.1.6 Private Channel Selector Board Component List

INTEGRATED CIRCUITS
Channel IC's to specification P29768/S Redifon
sockets
3SK1 8623-19-64-14-335 (way) Souriau
Channel IC sockets comprise
Terminal 1938-4 (8 way) Molex
\& Nest 2460 (8 way) Molex

7.1.7 Tx Driver Board Component List

RESISTORS
All resistors are $\pm 5 \% 0.33 W$ Mullard CR25

4 R 1	150\%
$4 \mathrm{R2}$	2208
4 R 3	1003
4R4	22k?
4R5	10k?
$4 \mathrm{R6}$	220,
4 R 7	$6.8 \mathrm{k} \Omega$
$4 \mathrm{R8}$	3-3kR
$4 \mathrm{R9}$	100\%
4R10	2208
4 R 11	100\%
4 R 12	10k:?
4R13	2. $2 \mathrm{k} \Omega$
4R14	470Ω
4 R 15	47 k S
4R16	33k8
4 R 17	10ks
4R18	100s?
4R19	150?
4R20	Not used
4R21	478
4R22	$1 \mathrm{k} \Omega$
4R23	2208
4R24	478
4R25	$1 \mathrm{k} \Omega$
4R26	2208
4R27	158
4R28	2708
4 R 29	188
4R30	2708

Commonly used capacitors are identified as follows:
(i) $1000 \mathrm{pF} \pm 10 \%$ 100V Mullard 630-02102
(ii) $0.01 \mu \mathrm{~F} 40 \mathrm{~V}$ Mullard 629-02103
(iii) $0 \cdot 5-7 \mathrm{pF}$ 2000V Trimmer Oxley TUT/7/ST-R
$4 \mathrm{C}_{1} \quad 1000 \mathrm{pF}(\mathrm{i})$
$4 \mathrm{C} 2 \quad 1000 \mathrm{pF}(\mathrm{i})$
$4 \mathrm{C} 3 \quad 47 \mathrm{pF} \pm 2 \%$ 63V Mullard 632-34479
$4 \mathrm{C} 4 \quad 12 \mathrm{pF} \pm 2 \% 63 \mathrm{~V}$ Mullard 632-10129
$4 \mathrm{C} 5 \quad 10 \mathrm{pF} \pm 2 \%$ 63V Mullard 632-10109
$4 \mathrm{C} 6 \quad 10 \mathrm{pF} \pm 2 \% 63 \mathrm{~V}$ Mullard 632-10109
4 C 7 5-60pF 300V Trimmer Mullard 809-08003
$4 \mathrm{C} 8 \quad 100 \mathrm{pF} \pm 2 \%$ 63V Mullard 632-34101
$4 \mathrm{C} 9 \quad 100 \mathrm{pF} \pm 2 \%$ 63V Mullard 632-34101
$4 \mathrm{C}_{10} \quad 0.01 \mu \mathrm{~F}$ (ii)
$4 C_{11} \quad 0.01 \mu \mathrm{~F}(\mathrm{ii})$
$4 \mathrm{C} 12 \quad 0.01 \mu \mathrm{~F}(\mathrm{ii})$
$4 \mathrm{C}_{13} \quad 0.01 \mu \mathrm{~F}(\mathrm{ii})$
$4 \mathrm{C} 14 \quad 1000 \mathrm{pF}(\mathrm{i})$
4C15 0.5-7pF(iii)

```
4C1t) O. 5-7pF(iii)
C'17 0.5-7pF(iii)
\C18 1000pF(i)
4C19 1000pF(i)
4C20 2-9pF 300V Trimmer Mullard 809-09002
44C21 1000pF(i)
4C22 1000pF(i)
4C23 1000pF(i)
4C24 1000pF(i)
4C25 1000pF(i)
4C26 1000pF(i)
4C27 1000pF(i)
4C28 0.5-7pF(iii)
4C29 0. 5-7pF(iii)
4C30 0.5-7pF(iii)
4C31 1000pF(i)
4C32 1000pF(i)
4C33 1000pF(i)
4C34 1000pF(i)
4C35 2-18pF 300V Trimmer Mullard 809-09003
4C36 18pF \pm 2% 63V Mullard 632-10189
4C37 1000pF(i)
4C38 1000pF(i)
4C39 1000pF(i)
4C40 2-18pF 300V Trimmer Mullard 809-09003
4C41 1000pF(i)
4C42 22\muF 25V Mullard 015-16229
4C43 18pF \pm 2% 63V Mullard 632-10189
4C44 0.01\muF \pm 10% 100V Erie 8121M-100-103K-W5R
4C45 0.01\muF \pm 10% 100V Erie 8121M-100-103K-W5R
4C46 0.014F(ii)
4C47 1000pF(i)
4C48 1000pF(i)
DIODES
\begin{tabular}{ll} 
4D1 & 1N4148 ITT \\
4D2 & 1N4148 ITT \\
4D3 & HP5082-2800 Hewlett Packard \\
4D4 & HP5082-2800 Hewlett Packard \\
4D5 & HP5082-2800 Hewlett Packard \\
4D6 & HP5082-2800 Hewlett Packard
\end{tabular}
```

TRANS ISTORS

4 TR 1	E300 Siliconix
4 TR2	40673 RCA
$4 T R 3$	BF115 Mullard
4 TR 4	$2{ }^{2} 918$ Texas
4 TR5	40673 RCA
4 TR6	2N918 Texas
4 TR7	2 N 4427 RCA
INDUCTORS	
$4 \mathrm{~L}_{1}$	P29733/3 Redifon
4L2	$100 \mu \mathrm{H}$ Painton 58/10/0017/10
4 L 3	1. $5 \mu \mathrm{H}$ Painton 58/10/0006/10
$4 \mathrm{~L} /$	P29680/3 Redifon
4 L 5	P29680/3 Redifon

416	Pr9680/3 Redifon
4.7	P29662/3 Redifon
4 L 8	0.15 $\mu \mathrm{H}$ Cambion 550-3399-03
4 L 9	P29680/3 Redifon
4 L 10	P29680/3 Redifon
4 L1 1	P29680/3 Redifon
4 L 12	1. $5 \mu \mathrm{H}$ Painton 58/10/0006/10
4 L13	O-15uH Cambion 550-3399-03
4 L 14	P29662/3 Redifon
4 L15	1. $5 \mu \mathrm{H}$ Painton 58/10/0006/10
4 L16	O-15 1 H Cambion 550-3399-03
4 L 17	P29662/3 Redifon

TRANSFORMERS

| 4T1 | P29678/3 Redifon |
| :--- | :--- | :--- |
| 4 T 2 | P29677/3 Redifon |

$4 \times \mathrm{L} 1 \quad 10 \cdot 7 \mathrm{MHz}$ to specification P29603/S Redifon
7.1.8 Power Amplifier Component List

RESISTORS
All resistors are $\pm 5 \%$ 0. 33 W Mullard CR25 unless otherwise stated

4R40	2208	
4R41	2208	
4R42	680\%	,
4R43	568	
4R44	1003	
4R45	220\%	
4R46	108	
4R47	568	
4R48	0. $58 \pm 10 \% 2$-5W CGS C3A	
4R49	2. $2 \mathrm{k} \Omega$	
4R50	470 LIN 0. 2W Potentiometer Morganite 62H	
4R51	$1 \mathrm{k} \Omega$	
4R52	$1 \cdot 2 \mathrm{k} \Omega$	
4 R 53	10 k ,	
4R54	4708	
4R55	Not used	
4R56	1kS LIN O. 2 W Potentiometer Morganite 62H	
4R57	1. 5 k ,	
4R58	4708	
4859	828	
4R60	828	
4R61	$5 \cdot 6 \mathrm{k} \Omega$	
$4 \mathrm{R62}$	398	
4R63	4-7k	
4R64	4708	
4R65	1008	
4R66	$1 \mathrm{k} \Omega$	

CAPACITORS

Commonly used capacitors are identified as follows:
(i) 100 pF 500 V Erie $801 / \mathrm{K} 120051$ Type 2
(ii) 1000pF $\pm 10 \%$ 100V Mullard 630-02102
(iiii) $0.1 \mu F \pm 5 \% 250 \mathrm{~V}$ Siemens B32541-A3104J
(iv) 5-60pF 300V Trimmer Mullard 809-08003

```
4C50 1000pF(i)
4C51 5-60pF (iv)
4C52 100\muF 40V Mullard 016-17101
4C53 0.01\muF 40V Mullard 629-02103
4C54 1000pF(i)
4C55 1000pF(i)
4C56 1000pF(i)
4C57 1000pF(ii)
4C58 22\muF 16V ITT TAG22M16
4C59 1000pF(i)
4C60 1000pF(i)
4C61 5-60pF(iv)
4C62 82pF \pm 2% 63V Mullard 632-34829
4C63 82pF \pm 2% 63V Mullard 632-34829
4C64 O.1\muF (iii)
```

$4 \mathrm{C} 65 \quad 12 \mathrm{pF} \pm 2 \%$ 63V Mullard 632-10129
$4 \mathrm{C} 66 \quad 22 \mathrm{pF} \pm 2 \% 63 \mathrm{~V}$ Mullard 632-34229
4 C 67 1000pF (i)
$4 \mathrm{C} 68 \quad$ O. O1 $\mu \mathrm{F}$ 40V Mullard 629-02103
$4 \mathrm{C} 69 \quad 1000 \mathrm{pF}(\mathrm{i})$
$4 \mathrm{C} 70 \quad$ 5-60pF(iv)
$4 C 71 \quad 47 \mathrm{pF} \pm 2 \% 63 \mathrm{~V}$ Mullard 632-34479
$4 \mathrm{C} 72 \quad 47 \mathrm{pF} \pm 2 \% 63 \mathrm{~V}$ Mullard 632-34479
$4 \mathrm{C} 73 \quad 1000 \mathrm{pF}$ (ii)
$4 \mathrm{C} 74 \quad 5-60 \mathrm{pF}$ (iv)
$4 \mathrm{C} 75 \quad 5-60 \mathrm{pF}$ (iv)
4 C 76 1000pF(ii)
$4 \mathrm{C} 77 \quad 1000 \mathrm{pF}(\mathrm{ii})$
4 C 78 2. 2 1 F 63V Mullard 015-18228
$4 \mathrm{C} 79 \quad 100 \mathrm{pF} \pm 2 \% 63 \mathrm{~V}$ Mullard 632-34101
$\left.\begin{array}{l}4 C 80 \\ 4 C 89\end{array}\right\}$ see section 7.1 .9
$4 \mathrm{C90} \quad 1000 \mathrm{pF}$ (ii)
$4 \mathrm{C} 91 \quad 1000 \mathrm{pF}$ (i)
$4 \mathrm{C} 92 \quad 0 \cdot 1 \mu \mathrm{~F}$ (iii)
$4 \mathrm{C} 93 \quad$ O. $1 \mu \mathrm{~F}$ (iii)
$4 \mathrm{C} 94 \quad 1000 \mathrm{pF}(\mathrm{ii})$
4 C95 10pF $\pm 5 \% 500 V$ Erie 801/P100
$4 \mathrm{C96}$ 1000pF(ii)
$4 \mathrm{C97} \quad 1000 \mathrm{pF}$ (ii)
$4 C 98 \quad 1000 \mathrm{pF}(\mathrm{ii})$
DIODES
4D10 Zener BZY88C9V1 Mullard
4D11 HP5082-2800 Hewlett Packard
4 D 12 1N4148 ITT
4D13 MPN3402 Motorola
4D14 1N4148 ITT
4 D15 Zener BZY88C4V7 Mullard

TRANS ISTORS

4TR10	2N3866 RCA
4TR11	2N5641 Motorola
4TR12	2N5643 Motorola
4TR13	MJE371 Motorola
4TR14	BC558 Mullard
4TR15	BC547 Mullard
4TR16	BC547 Mullard
4TR17	BC547 Mullard

INDUCTORS

4L30	P29639/3 Redifon
4L31	$0 \cdot 33 \mu \mathrm{H}$ Painton $58 / 10 / 0002 / 10$
4L32	1.5 H P Painton $58 / 10 / 0006 / 10$
4L33	1.5 H Painton $58 / 10 / 0006 / 10$
4L34	1.5 5 H Painton $58 / 10 / 0006 / 10$
4L35	P29745/3 Redifon
FERRITE BEADS	

4FB1	FX1242/B2 Mullard
4FB2	P29674/3 Redifon

RELAY
$4 \mathrm{RL}_{1}$ D27-A2-A11 Davall

MISCE LLANEOUS

7.1.9 Aerial Filter Component List

CAPACITORS

$\left.\begin{array}{l}\text { 4L36 } \\ \text { 4L37 } \\ 4 \text { L38 }\end{array}\right\} \quad$ single assembly P29743/3 Redifon
SOCKET
4SK1 GE15034P Greenpar
7.1. 10 Switch ing Regulator Board Component List

RESISTORS
All resistors are $\pm 5 \% \quad 0.33 \mathrm{~W}$ Mullard CR25 unless otherwise stated

5R1	$2 \cdot 2 k \Omega$
5R2	330Ω
5R3	$100 \mathrm{k} \Omega$
5R4	$47 \mathrm{k} \Omega$
5R5	$220 \mathrm{k} \Omega$

5R6 1ks LIN 0. 5W Potentiometer Morganite 90 H
5R7 330 7
5R8 330Ω
5R9 6.8 k ת
$5 \mathrm{R}_{10} \quad 6.8 \mathrm{k} \Omega$
5R11 120
5R12 2208
5R13 3.3ks
5R14 270R
5R15 18
$5 \mathrm{R} 16 \quad 1 \mathrm{k} \Omega$
CAPAC ITORS

5C1 100uF 3V ITT TAG100M3
5C2 $220 \mathrm{pF} \pm 2 \%$ 63V Mullard 632-58221
5C3 $220 \mathrm{pF} \pm 2 \%$ 63V Mullard 632-58221
$5 \mathrm{C} 4 \quad \mathrm{O} \cdot 1 \mathrm{\mu F} \pm 5 \% 250 \mathrm{~V}$ Siemens B32541-A3104J
5C5 2. $2 \mu \mathrm{~F} 63 \mathrm{~V}$ Mullard 015-18228
5C6 680~F 40V Mullard 017-17681
$5 C 7 \quad 1000 \mathrm{pF} \pm 10 \% 100 \mathrm{~V}$ Mullard 630-02102
$5 \mathrm{C} 8 \quad 100 \mu \mathrm{~F} 20 \mathrm{~V}$ Union Carbide K100J20S
5C9 1000 10 F 25V Erie 21104-100-0102-OT-0250
5C10 $100 \mu \mathrm{~F} 20 \mathrm{~V}$ Union Carbide K100J20S
5C11 $\quad 100 \mu \mathrm{~F} 20 \mathrm{~V}$ Union Carbide K100J20S
5C12 10 12 F 16V ITT TAG10M16
DIODES
5D1 1N4002 Texas
5D2 1N4148 ITT
5D3 Zener BZY88C4V3 Mullard
5D4 Zener BZY88C 10 Mullard
5D5 EF50M1 Westinghouse
5 D 6 EF 50 M 3 Westinghouse
5D7 IN4734A Motorola
5D8 IN4742A Motorola.

TRANS ISTORS

5TR1	BC548 Mullard
5TR2	BC558 Mullard
5TR3	BC548 Mullard
5TR4	BC548 Mullard
5TR5	2N3053 Mullard

5TRE, BFR86 Texas

5TR7 BFR79 Texas
5TR8
BDY90 Mullard
INTEGRATED CIRCUIT

SIC1 MC14001CP Motorola
INDUCTORS

5L1	P29683/3 Redifon
5L2	33 HH Painton 58/10/0014/10
5L3	P29682/3 Redifon
5L4	P29681/3 Redifon

TRANSFORMER
5T1 P29684/3 Redifon
FUSE
5FS $1 \quad 1 \mathrm{~A}$ Belling Lee L1427

RESISTORS
All resistors are $\pm 5 \% 0 \cdot 33 \mathrm{~W}$ Mullard CR25 unless otherwise stated
$7 \mathrm{R}_{1} \quad 47 \mathrm{k} \Omega$
7 R 2 1k 3
7R3 3 -3k
7R4 470
7R5 1003

7R6 3308
7 R 71 k 3
7R8 $\quad 1 \mathrm{k} \Omega$ LIN 0.5 W Potentiometer Morganite 90 H
$7 \mathrm{R9} \quad 1 \mathrm{k} \Omega$
7R10 4.7ks

7R11 1208
CAPACITORS

7C1 $1000 \mathrm{pF} \pm 10 \% 100 \mathrm{~V}$ Mullard 630-02102
7C2 224 F 25 V Mullard 015-16229
7C3 1000pF $\pm 10 \%$ 100V Mullard 630-02102
$7 \mathrm{C} 4 \quad \mathrm{O} .1 \mu \mathrm{~F} \pm 5 \% 250 \mathrm{~V}$ Siemens B32541-A3104J
7C5 $\quad 47 \mu \mathrm{~F}$ 40V Mullard 016-17479
$7 C 6 \quad 0 \cdot 02 \mu \mathrm{~F} 500 \mathrm{~V}$ Erie $811 / \mathrm{K} 800011$ Type 2
$7 \mathrm{C} 7 \quad 47 \mu \mathrm{~F}$ 40V Mullard 016-17479

DIODES

7D1 Zener BZY88C5V6 Mullard
7D2 1N4148 ITT
7D3 Zener BZY88C15V Mullard
7D4 1N4002 Motorola

TRANSISTORS

7TR1 2N5298 RCA
7TR2 2N3906 Texas
7TR3 2N3906 Texas

FUSES
7FS1 1.6A anti-surge Standard Fuse Co. C254/1.6A
7FS2 5A anti-surge Standard Fuse Co. C254/5A
7FS 3 5A Standard Fuse Co. C19F/5A
7FS4 2A Standard Fuse Co. C19/2A

7.1.12 Relay Board Component List

RES ISTORS

R12 $10 \mathrm{k} \Omega \pm 5 \%$ 0. 33W Mullard CR25
R13 $10 \Omega \pm 5 \%$ 0.33W Mullard CR25

CAPACITORS
7C8 680 FF 40V Mullard 017-17681
7C9 $0.02 \mu \mathrm{~F} 500 \mathrm{~V}$ Eríe $811 / \mathrm{K} 800011$ Type 2
7C10 47 10 F 40V Mullard 016-17479
7C11 0.02 11 F 500V Erie 811/K800011 Type 2
7C12 47 12 F 40V Mullard 016-17479
7C13 $0.02 \mu \mathrm{~F} 500 \mathrm{~V}$ Erie $811 / \mathrm{K} 800011$ Type 2
1000-1

HIODES

7D5 Surge suppresser BZW7O-33 Mullard
7D6 1N4148 ITT

INDUCTOR
$7 \mathrm{~L} 1 \quad$ P29852/3 Redifon

RE LAYS

7RL1 P29838/2 Redifon
7RL2 P29838/2 Redifon
7.1.13 Chassis Mounted Component List

RESISTORS
6R1 10k $2 \pm 5 \%$ 0. 33w Mullard CR25
6R2 10ks $\pm 5 \%$ 0. 33W Mullard CR25

CAPAC ITORS
6C1 4700~F 50V plessey 439/1/23611/071
6 C 2 1000pF 500V Leadthrough Erie $361 / \mathrm{K} 2600$
6C3 1000pF 500V Leadthrough Erie $361 / \mathrm{K} 2600$
6 C 4 1000pF 500 V Leadthrough Erie $361 / \mathrm{K} 2600$
6C5 1000pF 500V Leadthrough Erie 361/K2600

6C6 1000pF 500V Leadthrough Erie 361/K2600
$6 C 7$ Not used
6C8 $0.47 \mu \mathrm{~F}$ 100V ITT PMT2RO. 47 M 100
6C9 0.47 HF 100V ITT PMT2RO. 47 M 100
DIODES
6D7 - Bridge rectifier AEI PM7A2
oD10

TRANS ISTOR
6 TR 4 RCA $2 N 6254$
TRANSFORMERS
6T1 Redifon SR/T2860
6T2 Redifon SR/T2861
INDICATOR LAMP
6LP1 28 V 24 mA Guest 280

SWITCHES
6S1 Arrow 81055-BT-13
6S2 Arrow 81055-BT-13
SOCKET
6SK1 Greenpar GE15041C22
7. 2 STANDARD CONTROL UNIT SRC66
7.2.1 Remote Logic Board Component List RESISTORS

All resistors are $\pm 5 \%$ o. 33W Mullard CR25

1R1	33 k 8
1R2	100 kQ
1R3	33 k 8
1R4	33 k 8
1R5	33 k 8

1R6 33k8
1R7 33k8
$1 \mathrm{R} 8 \quad 33 \mathrm{k} 8$
1R9 33 k 8
1R10 33k\&
1R11 33k8
1R12 33k8
1R13 33ks
1R14 33 k 8
1R15 150ks
1R16 68 ks
1 R17 100k8
1R18 33k8
1R19 33kS
1R20 100k8
1 R21 33k8
1 R22 33kQ
$1 R 23$ 33k8
1224 150k9
1R25 1M8
1 R26 150k9
$1 \mathrm{Rz7} 68 \mathrm{kS}$
$1 R 28 \quad 10 \mathrm{~kg}$
1 R29 10k9
1R30 68ks
1R31 10k8
1R32 10k8
1 R33 150k8
1 1234 330ks
1R35 150k8
1R36 100ks
1R37 100k9
1R38 100k8
$1 R 39$ 100k8
$1 R 40$ 100ks
$1841 \quad 100 \mathrm{k} 9$
$1 \mathrm{R42} 100 \mathrm{k} 9$
1243 100k8
1R44 100k9
$1 R 45$ 100k9

1R46	100k8
1 R 47	100k8
1R48	100k8
1 R 49	100k8
1R50	100k8
1R51	100k8
1R52	33188
1 R 53	100k8
1R54	100k8
1 R 55	150k8
1856	33k8
1R57	150k8
1858	33k8
1 R 59	330k8
1R60	220k8
1R61	22 k 8
1R62	10k8
1R63	10k8
1R64	15 k 8
1R65	1. 2 k 8
1R66	8209
1R67	2.7k8

All capacitors marked are 0 - $1 \mu \mathrm{~F} \pm 5 \%$ 250V Siemens B32541-A3104J
$\mathrm{IC}_{1} \quad \mathrm{O} \cdot{ }_{1 \mu \mathrm{~F}}{ }^{*}$
$1 \mathrm{C} 2 \quad 0 \cdot 1 \mu \mathrm{~F}^{*}$
1C3 $\quad 0.1 \mu \mathrm{~F} *$
$1 \mathrm{C} 4 \quad 10 \mu \mathrm{~F} \quad 16 \mathrm{~V}$ ITT TAG $10 \mathrm{M}_{16}$
1C5 1 4 F 35V ITT TAG $1 \cdot 0$ OM35
$1 \mathrm{C6} \quad$ 10 FF 16V ITT TAG10M16
$1 \mathrm{C} 7 \quad 0.47 \mathrm{FF} \pm 5 \% \mathrm{100V}$ Siemens B32541-A1474J
$1 C 8 \quad 0.1 \mu \mathrm{~F}^{*}$
$1 \mathrm{C9} \quad \mathrm{O} \cdot 1 \mathrm{LF}^{*}$
$1 \mathrm{C}_{10} \quad \mathrm{O} \cdot 1 \mu \mathrm{~F}{ }^{*}$
${ }^{1 C} 11 \quad 0.47 \mu \mathrm{~F} \pm 5 \%$ 100V Siemens B32541-A1474J
DIODES
$\left.\begin{array}{ll}\text { 1D1 - } \\ \text { 1D31 }\end{array}\right\}$ All $1 N 4148$ ITT
TRANSISTORS

1TR1	BC548	Mullard
1TR2	BC558	Mullard
1TR3	BC558	Mullard
1TR4	BC548	Mullard
1TR5	BC548	Mullard
1TR6		BC548
Mullard		
1TR7	BC548	Mullard
1TR8	BC548	Mullard
1TR9	BC548	Mullard
1TR10	BC548	Mullard

1TR11	BC558	Mullard
1TR12	BC548	Mullard
1TR13	BSX20	Mullard
1TR14	BC548	Mullard

INTEGRATED CIRCUITS

1IC1	MC14002CP	Motorola
1IC2	MC14012CP	Motorola
1IC3	MC14012CP	Motorola
1IC4	MC14011CP	Motorola
1IC5	MC14011CP	Motorola
1IC6	MC14011CP	Motorola
1IC7	MC14001CP	Motorola
1IC8	MC14023CP	Motorola
1IC9	MC14023CP	Motorola
1IC10	MC14027CP	Motorola
1IC11	MC14027CP	Motorola
1IC12	CD4042AE	RCA
1IC13	CD4042AE	RCA
1IC14	CD4042AE	RCA
1IC15	CD4042AE	RCA
1IC16	MC14519	Motorola
1IC17	MC14519	Motorola
1IC18	MC14011CP	Motorola
1IC19	MC14506CP	Motorala
1IC20	MC14012CP	Motorola
1IC21	MC14002CP	Motorola
1IC22	CD4050AE	RCA
1IC23	CD4050AE	RCA
1IC24	SN7447AN	Texas
1IC25	SN7477AN	Texas
TERMINAL STRIPS		

1TS 1 8/4-3077 (4 way) Klippon
1TS2 $8 / 10-3026$ (10 way) Klippon
7.2 .2 SRC Linear Board Component List

RESISTORS

All resistors are $\pm 5 \%$ 0. 33W Mullard CR25 unless otherwise stated

2R20	4.7k8
2R21	4702
2 R 22	$4702 \pm 10 \%$ 5W Painton MV1A
2R23	1k8 LIN O. 2 W Potentiometer Morganite 62 H
2R24	22 k 8
2R25	4708
2R26	2. $2 \mathrm{k} \Omega$
2R27	2. $2 \mathrm{k} \Omega$
2R28	1 k 8
2R29	10k8
2R30	10k\%
2R31	10k9
2R32	10 k 8
2R33	1k\% LIN 0. 2W Potentioseter Morganite 62H
2R34	3-3k8

2 R 35	3. 3 ksc
2R36	$2 \cdot 2 k \Omega$
2R 37	220ks
2R38	220kS
2R39	22ks
2 R 40	470 k 8
2R41	220k8
$2 R 42$	22k 8
2R43	10 k ?
2R44	2. 2 k \%
2R45	220k8
2R46	689
2R47	10 k ,
$2 \mathrm{R}_{4} 8$	150k8
2R49	2. 2 k Q LIN 0. 2W Potentiometer Morganite 62 H
2 R 50	$560 \Omega \pm 10 \%$ 5W Painton MV 1A
2R51	3308
2R52	3308
2R53	820\% \pm 10\% 5W Painton MV 1A
2R54	$4 \cdot 7 \mathrm{k} 8$
2R55	2. 2 k ת
CAPACITORS	
All capacitors marked* are 10 F F 63V Mullard 016-18109	
2 C 10	104F* ${ }^{\text {* }}$
2C11	100HF 40V Mullard 016-17101
2 C 12	$10 \mu \mathrm{~F}$ *
2 C 13	10ヶF**
2 C 14	$10 \mu \mathrm{~F}$ *
2 C 15	22 F 25 V Mullard 015-16229
2 C 16	10 ${ }^{\text {F }}{ }^{*}$
2 C 17	0.1 $1 \mu \mathrm{~F} \pm 5 \% 250 \mathrm{~V}$ Siemens B32541-A3104J
2C18	100\%F 25V Mullard 016-16101
2C19	1004F 25V Mullard 016-16101
2 C 20	100\%F 25V Mullard 016-16101
DIODES	
2D20	1N4148 ITT
2D21	1N4148 ITT
2D22	1N4148 ITT
2D23	1N4148 ITT
2D24	Zener BZY88C10 Mullard
2D25	1N4148 ITT
2D26	1N4148 ITT
2 D 27	1N4148 ITT
2D28	1N4148 ITT
2 D 29	BYX36-150 Mullard
2D30	1N4148 ITT
2D31	Zener BZY88C6V2 Mullard
2D32	1N4148 ITT
2 D 33	Zener BZY88C9V1 Mullard

TRANS ISTORS

```
2TR10 BC547 Mullard
2TR11 BC547 Mullard
2TR12 BC557 Mullard
2TR1's BSX20 Mullard
2TR14 E112 Siliconix
2TR15 E112 Siliconix
2TR1G, E112 Siliconix
2TR17 BFY51 Mullard
2TR18 BC547 Mullard
2TR19 E112 Siliconix
2TR20 BC547 Mullard
2TR21 BC547 Mullard
2TR22 2N3O53 RCA
RE LAY
2RL2 P29837/S Redifon
TERMINAL STRIPS
2TS1 MK8/10 - 3026 (10 way) K1ippon
2TS2 MK8/10 - 3026 (10 way) Klippon
2TS3 MK8/4 - 3077 (4 way) Klippon
```

7.2.3 SRC Panel Mounted Component List

POTENTIOMETERS

```
3R1 (Volume) 10k& LIN 1W Erie 500/1
3R2 (Squelch) 10kS LIN 1W Erie 500/1
3R3 (Dimmer) 10k& LIN 1W Erie 500/1
```

TRANS ISTORS
3TR1 2N3055 RCA
3TR2 2N3O55 RCA
SWITCHES

```
3S6 (On/Off) CKW7101 Roxburgh
3S7 (Tx Power) CKW7101 Roxburgh
3S8 (ELU/Loudspeaker) CKW7203 Roxburgh
KEYBOARD ASSEMBLY
```

3 КВ 1 P29758/2 Redifon

LAMPS

```
Al1 lamps marked* are 6V 0. 36W LES Vitality 673 E5/8
3LP6 (Panel illum.) 6V 0.36W *
3LP7 (Tx On) 5V 0.06A Guest TI525B
3LP8 (Panel illum.) 6V 0.36W*
3LP9 (Channel 16) 5V 0.06A Guest TI525B
3LP10(Keyboard) 6V 0.36W*
```

```
3LP11 (Keyboard) 6V 0.36W*
3LP12 (Keyboard) 6V 0.36W*
3LP13 (Keyboard) 6V 0.36W*
```

CHANNEL READOUT DISPlays

```
3CRD1 (Tens) FDB 5V 15F KGM (Okayatron)
```

3CRD2 (Units) FDB 5V 15F KGM (Okayatron)
LOUDSPEAKER
3LS1 159, 3" Fane 3228

TERMINAL STRIP
3TS1 L1350/Ni (6 way) Belling Lee

7. 3 YASTER CONTROL UNIT MRC66

N.B. Remote Logic Module

This module is the same as that fitted to the Standard Control Unit SRC66. See section 7.2.1 for Component List, Fig. 7.22 for PCB layout and Fig. 7.23 for Circuit Diagram.
2.3.1 MRC Linear Board Component List

RES ISTORS

All resistors are $\pm 5 \%$ 0. 33W Mullard CR25 unless otherwise stated

$2 R 1$	$4 \cdot 7 \mathrm{k} \Omega$
$2 R 2$	$22 \mathrm{k} \Omega$

2R3 4.7k 3
2R4 22k
$2 \mathrm{~K} 5 \quad 10 \Omega \pm 10 \%$ 5W Painton MV1A
2RG $\quad 1 \mathrm{k} \Omega$ LIN O. 2 W Potentiometer Morganite 62 H
2R7 1k\& LIN O. 2W Potentiometer Morganite 62H
$2 R 8 \quad 4.7 \mathrm{k} \Omega$
$2 R 9 \quad 22 k \Omega$
$2 \mathrm{R}_{10} \quad 1 \mathrm{k} \Omega$ LIN O. 2W Potentiometer Morganite 62H
\(\left.\begin{array}{l}2 R_{11}

to

2R19

2 R_{20}\end{array}\right\} \quad\)| Not used |
| :--- |$\quad 4 \cdot 7 \mathrm{k} \Omega$

2 R 214703

2 R 22 470s 土 10\% 5W Painton MV 1A
2R23 1K\& LIN 0.5 W Potentiometer Morganite 90 H
2R24 22k Ω
2R25 470~
2R26 2. 2 k ת
$2 \mathrm{R}_{27} 2 \cdot 2 \mathrm{k} \Omega$
2R28 1ks
$2 R 29$ 10k3
2 R 30 10ks
$2 R 31 \quad 10 k \Omega$

2R32 10k 2
2R33 1kS LIN O. 2W Potentiometer Morganite 62H
2R34 3 -3k Ω
$2 R 35$ 3. $3 \mathrm{k} \Omega$
2R36 2. $2 \mathrm{k} \Omega$

2R37 220kR
2R38 220k Ω
2R39 22k
2R40 470ks
$2 R 41$ 220ks
$2 R 42 \quad 22 k \Omega$
$2 R 43 \quad 10 \mathrm{k} \Omega$
$2 R 44 \quad 2 \cdot 2 k \Omega$
2R45 220k?
$2 R 46 \quad 689$

2 R 47 10k Ω
$2 R 48 \quad 150 \mathrm{k} \Omega$
2R49 2. 2ks LIN O. 2W Potentiometer Morganite 62 H
2R50 $560 \Omega \pm 10 \% 5 W$ Painton MV1A
2R厂1 3308

CAPACITORS

All capacitors marked are $10 \mu \mathrm{~F}$ 63V Mullard 016-18109
$2 \mathrm{C} 10 \quad 10 \mu \mathrm{~F}$ *
2C11 100 11 F 40 V Mullard 016-17101
2C 12 10 $\mu \mathrm{F}$ *
$2 C_{13} 10 \mu \mathrm{~F}$
2C14 10 14 F*

2C15 22 15 25V Mullard 015-16229
2C16 10 $16 \mathrm{~F}^{*}$
$2 \mathrm{C} 17 \quad \mathrm{O} \cdot 1 \mu \mathrm{~F} \pm 5 \% 250 \mathrm{~V}$ Siemens B32541-A3104J
2C18 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ Mullard 016-16101
2C19 100~F 25V Mullard 016-16101
$2 \mathrm{C} 20 \quad 100 \mu \mathrm{~F} 25 \mathrm{~V}$ Mullard 016-16101
DIODES
2D $1 \quad 1$ N4148 ITT
2D2 $1 N 4148$ ITT
2D3 BYX36-150 Mullard
2D4 BYX36-150 Mullara
$2 \mathrm{D} 5 \quad 1 \mathrm{~N} 4148 \quad$ ITT

2D6 1N4148 ITT
2D7 BYX36-150 Mullard
2D8 BYX36-150 Mullard

2D9 \quad 1N4148 ITT
2D $10 \quad 1 \mathrm{~N}_{4} 148$ ITT

2D21 1 N4148 ITT
2D22 1 N4148 ITT
2D23 1N4148 ITT
2D24 Zener BZY88C10 Mullard
2D25 1N4148 ITT
2D26 1 N4148 ITT
2D27 1N4148 ITT
2D28 1N4148 ITT
2D29 BYX36-150 Mullard
2D30 1N4148 ITT
2D31 Zener BZY88C6V2

2D32 1N4148 ITT
2D33 Zener BZY88C9V1 Mullard
TRANSISTORS

2TR10	BC547	Mullard
2TR11	BC547	Mullard
2TR12	BC557	Mullard
2TR13	BSX20	Mullard
2TR14	E112	Siliconix

2TH15	E112 Siliconix	
こTKい。	H．ll2 Siliconix	
こT以ヶ	BFY51 Mullard	
\because TR16	BC547 Mullard	
2TR19	E112 Siliconix	
2 TR20	BC547 Mullard	
$2 T R 21$	BC547 Mullard	
2TR22	2N3053 RCA	
SW＇TCH		
$2 S 1$	P29803／3 Redifon	
RE LAYS		
2R L1	P29837／S Redifon	
2RL2	P29837／S Redifon	
TERMINAL	STRIPS	
2TS 1	MK8／10－3026（ 10 way）	Klippon
$2 T S 2$	MK8，10－3026（ 10 way）	Klippon
2 TS 3	MK8／4－3077（4 way）	Klippon
2TS4	MK8／4－ 3077 （4 way）	Klippon
2TS5	MK8／10－3026（ 10 way）	Klippon
2TS6	MK8／10－3026（ 10 way ）	Klippon
2TS7	MK8／4－3077（4 way）	Klippon
2TS8	MK8／10－3026（ 10 way）	Klippon

7．3．2 MRC Panel Mounted Component List
POTENT IOMETERS

3R1（Volume）10k』 LIN 1 W Erie 500／1
3R2（Squelch）10ks LIN 1 W Erie 500／1
3R3（Dimmer）1Ok\＆LIN 1W Erie 500／1
TRANS ISTORS
3TR1 2N3055 RCA
3 TR2 2N3055 RCA

SWITCHES

3S1（Call Ext）	CKW7208 Roxburgh
33^{2}（B／W Loudspeakers）	CKW7201 Roxburgh
3 S 3 to $\}$	Not used
$355\}$	Not used
？sf．（ On，Off ）	CKW7101 Roxburgh
3S7（Tx Power）	CKW7 101 Roxburgh
3S8（ELJ／Loudspeaker）	CKW7203 Roxburgh
KEYBOARD ASSEMBLY	

3KB1 P29758／2 Redifon
LAMPS
All lamps marked＊are 6 V 0．36W LES Vitality 673 ES／8
3 LP1（Ext．in use） $5 V 0.06 A$ Guest II525B
$\begin{array}{ll}3 L P 2 & \text { to？}\end{array}$
Not used
3 LP6（Panel illum．）6V 0．36W＊
3LP7（Tx On）5V 0．06A Guest TI525B
1000－1

```
{LP& (Panel illum.) 6V 0.36W*
3[P() (Chanmel 1G) 5V 0.06A Guest T1525B
31&'|) (Keyboard) 6V 0. 36W*
'3J'11 (Keyboard) 6V 0. 36W*
;IF12 (Keyboard) 6V 0. 36W*
31513 (Keyboard) 6V 0.36W*
CHANNEL READOUT DISPLAYS
```

```
3CRD1 (Tens) FDB 5V 15F KGM (Okayatron)
```

3CRD1 (Tens) FDB 5V 15F KGM (Okayatron)
3CRD2 (Units) FDB 5V 15F KGM (Okayatron)
3CRD2 (Units) FDB 5V 15F KGM (Okayatron)
TERMINAL, STRIP

```
TERMINAL, STRIP
```

$3 T S 1$ L1350/Ni (6 way) Belling Lee

(a) Front View

Fig 7.20 Location of Major Components MRT66

Tx vCo 50Ω
$145.3-147.8 \mathrm{MHz}$
$R \times \mathrm{VCO} 50 \Omega$

$001 / 11109 B / 1$

Fig. 7.5

1000-1

1000-1

(a) Front View

(b) Back Vicw

Fig 7.20 Location of Major Components MRT66

Remote Logic Circuit
Figure 7.23

SRC Linear Circuits
Fig. 7.25

SRC Linear Circuits
Fig. 7.25

Location of Major Components SRC66

Location of Major Components MRC66

KEYBDARD

[^0]: When an inhibited channel is selected, the channel readout display flashes. This function is performed by the flashing oscillator IC18c, d as follows. On an inhibited channel, the inhibit circuits in the transmitter/receiver send a "channel inhibited" signal ('1') down the green/blue core of the 36 -core interconnecting cable. (section 4.6.10). A '1' is thus applied via D19, R58, R57 to one input of IC18c. This switches the flashing oscillator on, the flashing rate being determined by R59, C11.

 The output from this oscillator is fed via the CMOS/TTL interfaces IC22, IC23, to TR7, TR8, thus flashing the displays. D30 causes the extra segments forming the 'P' to flash if an inhibited Private channel should be selected (e.g. if a P channel position is selected, which does not have a channel IC plugged in - see section 4.6.14). The st digit inhibit line (via D18) overrides the 'channel inhibited' signal at IC18c input if the units memory of the selected channel (A or B) is empty. Thus the display will not start to flash until a complete channel number is entered. 4.6.12 Channel 15/17 Recogniser (Fig.7.9)

 The channel data on the control lines is inspected by the channel 15/17 recogniser IC55b, TR13. The output from IC55b is normally '1' and TR13 is therefore turned off. In this condition, the high power instruction ('1') from the selected control unit which is fed down the Tx power control line (green/red core of the 36 -core interconnecting cable) is passed via R62 to the Tx power level line. This switches the transmitter to the high power output condition (section 4.9.3).

 When channels 15 or 17 are selected, the output from IC55b goes to ' 0 ', turning TR13 on. Thus, regardless of the Power switch position at the control unit, $a^{\prime} O$ ' is applied to the $T x$ power level line. This ensures that only low power output is available from the transmitter on these channels.

